Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Fiebig, Doris and Fiebig, Ulf-Rainer 2002. Compact factors of countable state Markov shifts. Theoretical Computer Science, Vol. 270, Issue. 1-2, p. 935.


    ×
  • Ergodic Theory and Dynamical Systems, Volume 21, Issue 6
  • December 2001, pp. 1731-1758

Invariants for subshifts via nested sequences of shifts of finite type

  • DORIS FIEBIG (a1) and ULF-RAINER FIEBIG (a1)
  • DOI: http://dx.doi.org/10.1017/S0143385701001821
  • Published online: 28 November 2001
Abstract

To obtain connections between grammars of languages and subshifts, Krieger introduced the idea of associating to a subshift X a certain increasing sequence of shifts of finite type X_{n} sitting inside X. Their union is the set of presynchronizing points. A system is called presynchronized if there is a sequence of irreducible components C_{n} \subset X_{n}, n \in \mathbb{N}, increasing with n and with dense union (a characterization of coded systems shows that presynchronized systems are coded). We investigate the uniqueness (up to eventual equality) of such sequences. For that an equivalence relation on the periodic presynchronizing points captures all the possible choices of increasing sequences of irreducible components. Dense equivalence classes correspond to dense unions. There is a one-sided and a two-sided theory. In the one-sided setting we show the uniqueness of a dense equivalence class and identify the right presynchronized systems as the well-known half-synchronized systems. The two-sided theory turns out to be more complicated (and interesting). There can be more than one dense class. Many examples are discussed in detail. There is a natural ordering on the set of (dense) equivalence classes. For each finite-order structure we find a representative in the countable class of systems which are intersections of Dyck shifts with shifts of finite type. Finally we discuss the relation to other known classes of subshifts, which is more subtle than in the one-sided setting. Almost all systems considered in this work will be coded.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax