Skip to main content Accessibility help
×
×
Home

Irrational rotation factors for conservative torus homeomorphisms

  • T. JÄGER (a1) and F. TAL (a2)

Abstract

We provide an equivalent characterization for the existence of one-dimensional irrational rotation factors of conservative torus homeomorphisms that are not eventually annular. It states that an area-preserving non-annular torus homeomorphism $f$ is semiconjugate to an irrational rotation $R_{\unicode[STIX]{x1D6FC}}$ of the circle if and only if there exists a well-defined speed of rotation in some rational direction on the torus, and the deviations from the constant rotation in this direction are uniformly bounded. By means of a counterexample, we also demonstrate that a similar characterization does not hold for eventually annular torus homeomorphisms.

Copyright

References

Hide All
[1] Poincaré, H.. Mémoire sur les courbes définies par une équation différentielle. J. Math. Pures Appl., Série IV 1 (1885), 167244.
[2] Denjoy, A.. Sur les courbes définies par les équations différentielles à la surface du tore. J. Math. Pures Appl. 11 (1932), 333376.
[3] Jäger, T. and Stark, J.. Towards a classification for quasiperiodically forced circle homeomorphisms. J. Lond. Math. Soc. 73(3) (2006), 727744.
[4] Aliste-Prieto, J.. Translation numbers for a class of maps on the dynamical systems arising from quasicrystals in the real line. Ergod. Th. & Dynam. Sys. 30(02) (2010), 565594.
[5] Aliste-Prieto, J. and Jäger, T.. Almost periodic structures and the semiconjugacy problem. J. Differential Equations 252(9) (2012), 49885001.
[6] Jäger, T.. Linearisation of conservative toral homeomorphisms. Invent. Math. 176(3) (2009), 601616.
[7] Jäger, T. and Koropecki, A.. Poincaré theory for decomposable cofrontiers. E-print arXiv:1506.01096.
[8] Franks, J. and Le Calvez, P.. Regions of instability for non-twist maps. Ergod. Th. & Dynam. Sys. 23(1) (2003), 111141.
[9] Béguin, F., Crovisier, S. and Le Roux, F.. Pseudo-rotations of the closed annulus: variation on a theorem of J. Kwapisz. Nonlinearity 17(4) (2004), 14271453.
[10] Jäger, T.. Periodic point free homeomorphisms of the open annulus – from skew products to non-fibred maps. Proc. Amer. Math. Soc. 138 (2010), 17511764.
[11] Misiurewicz, M. and Ziemian, K.. Rotation sets for maps of tori. J. Lond. Math. Soc. 40 (1989), 490506.
[12] Koropecki, Andres and Tal, Fabio Armando. Strictly toral dynamics. Invent. Math. 196(2) (2014), 339381.
[13] Jäger, T.. The concept of bounded mean motion for toral homeomorphisms. Dyn. Syst. 24(3) (2009), 277297.
[14] Guelman, N., Koropecki, A. and Armando Tal, F.. Rotation sets with non-empty interior and transitivity in the universal covering. Ergod. Th. & Dynam. Sys. 35 (2015), 883894.
[15] Besicovitch, A. S.. A problem on topological transformations of the plane. II. Math. Proc. Cambridge Philos. Soc. 47 (1951), 3845.
[16] Shnirelman, L. G.. An example of a transformation of the plane. Proc. Don Polytechnic Inst. (Novochekassk) 14 (1930), 6474 (Science section, Fis-math. part).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed