Skip to main content
×
Home
    • Aa
    • Aa

Josephson's junction, annulus maps, Birkhoff attractors, horseshoes and rotation sets

  • Kevin Hockett (a1) and Philip Holmes (a1)
Abstract
Abstract

We investigate the implications of transverse homoclinic orbits to fixed points in dissipative diffeomorphisms of the annulus. We first recover a result due to Aronson et al. [3]: that certain such ‘rotary’ orbits imply the existence of an interval of rotation numbers in the rotation set of the diffeomorphism. Our proof differs from theirs in that we use embeddings of the Smale [61] horseshoe construction, rather than shadowing and pseudo orbits. The symbolic dynamics associated with the non-wandering Cantor set of the horseshoe is then used to prove the existence of uncountably many invariant Cantor sets (Cantori) of each irrational rotation number in the interval, some of which are shown to be ‘dissipative’ analogues of the order preserving Aubry-Mather Cantor sets found by variational methods in area preserving twist maps. We then apply our results to the Josephson junction equation, checking the necessary hypotheses via Melnikov's method, and give a partial characterization of the attracting set of the Poincaré map for this equation. This provides a concrete example of a ‘Birkhoff attractor’ [10].

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Josephson's junction, annulus maps, Birkhoff attractors, horseshoes and rotation sets
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Josephson's junction, annulus maps, Birkhoff attractors, horseshoes and rotation sets
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Josephson's junction, annulus maps, Birkhoff attractors, horseshoes and rotation sets
      Available formats
      ×
Copyright
References
Hide All
[1]Abidi A. A. & Chua L. O.. On the dynamics of Josephson junction circuits. Electronic Circuits and Systems 3 (1979), 186200.
[2]Arnold V. I.. Geometrical Methods in the Theory of Ordinary Differential Equations. Springer-Verlag: New York, Heidelberg, Berlin, 1982.
[3]Aronson D. G., Chory M. A., Hall G. R. & McGeehee R. P.. Bifurcations from an invariant circle for two parameter families of maps of the plane: a computer assisted study. Comm. Math Phys. 83 (1982), 303354.
[4]Aubry S.. The twist map, the extended Frankel-Kontorova model, and the Devil's staircase. Physica 7D (1983), 240258.
[5]Aubry S. & LeDaeron P.. The discrete Frenkel-Kontorova model and its extensions. Physica 8D (1983), 381422.
[6]Belykh V. N., Pedersen N. F. & Soerensen O. H.. Shunted Josephson Junction model, I—The autonomous case and II—the non-autonomous case. Phys. Rev. B. 16 (1977), 48534871.
[7]Birkhoff G. D.. Proof of Poincaré's geometric theorem. Trans. Amer. Math. Soc. 14 (1913), 1422.
[8]Birkhoff G. D.. Dynamical Systems. Amer. Math. Soc. Colloq. Publ. 9, Providence, R.I., 1927 (reissued 1966, 1981).
[9]Birkhoff G. D.. Sur l'existence de regions d'instabilité en Dynamique. Annales de l'inst. Henri Poincaré 2 (1932), 369386.
[10]Birkhoff G. D.. Sur quelques courbes fermées remarquables. Bull de la Soc. Mathem. de France 60 (1932), 126.
[11]Bohr T., Bak P. and Jensen M. H.. Transition to chaos by interaction of resonances in dissipative systems: II. Josephson junctions, charge density waves and standard maps. Preprint, Cornell University, 1984.
[12]Boyland P.. Bifurcations of circle maps, Arnold tongues, bistability and rotation intervals. Preprint, Boston University, 1983.
[13]Boyland P. L. & Hall G. R.. Invariant circles and the order structure of periodic orbits in monotone twist maps. Preprint, Boston University.
[14]Byrd P. F. & Friedman M. D.. Handbook of Elliptic Integrals for Scientists and Engineers. Springer-Verlag: New York, Heidelberg, Berlin, 1971.
[15]Cartwright M. L. & Littlewood F. E.. On nonlinear differential equations of the second order I: The equation ÿ + k (1 − y 2) Ẏ + y = bλk cos (λt + a), k large. J. Lond. Math. Soc. 20 (1945), 180189.
[16]Casdagli M.. Periodic orbits for Birkhoff attractors. Preprint, Univ. of Warwick, 1985.
[17]Chenciner A.. Bifurcations de difféomorphismes de ℝ2 au voisiange d'un point fixe elliptique. Les Houches Summer School Proceedings, ed. Helleman R., Iooss G., North Holland, 1983.
[18]Chenciner A.. Bifurcations de points fixes elliptiques, I-Courbes invariantes, et II Orbites périodiques et ensembles de Cantor. To appear in Publ Math. IHES.
[19]Chenciner A., Gambaudo J. M. & Tresser C.. Une remarque sur la structure des endomorphismes de degre 1 du cercle. C.R.A.S. Paris, 299, Serie I, 5 (1984), 145148.
[20]Chenciner A., Gambaudo J. M. & Tresser C.. Une remarque sur les families d'endomorphismes de degré un du cercle. C.R.A.S., Paris, 299, Serie I, 15, (1984), 771773.
[21]Chirikov B. V.. A universal instability of many dimensional oscillator systems. Physics Reports 52, (1979), 263379.
[22]Chow S. N., Hale J. K. & Mallet-Paret J.. An example of bifurcation to homoclinic orbits. J. Dig. Eqns. 37 (1980), 351373.
[23]Greenspan B. D. & Holmes P. J.. Homoclinic orbits, subharmonics, and global bifurcations in forced oscillations. Chapter 10, pp. 172214 in Nonlinear Dynamics and Turbulence, ed. Barenblatt G., Iooss G. and Joseph D. D.. Pitman: London, 1983.
[24]Greenspan B. D. & Holmes P. J.. Repeated resonance and homoclinic bifurcation in a periodically forced family of oscillators. SIAM J. on Math. Analysis 15 (1984), 6997.
[25]Guckenheimer J. & Holmes P. J.. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer Verlag: New York, 1983.
[26]Guckenheimer J. & Williams R. F.. Structural stability of Lorenz attractors. Publ. Math. IHES 50 (1979), 5972.
[27]Hale J. K.. Ordinary Differential Equations. Wiley: New York, 1969.
[28]Hall G. R.. A topological version of a theorem of Mather on twist maps. Ergod. Th. & Dynam. Sys. 4 (1984), 585603.
[29]Hedlund G. A.. Sturmian minimal sets. Amer. J. Math. 66 (1944), 605620.
[30]Herman M. R.. Sur les Courbes Invariantes par les Diffeomorphismes de l'Anneau, I. Astérisque 103104 (1983).
[31]Holmes P. J.. Space- and time-periodic perturbations of the sine-Gordon equations. In Dynamical Systems and Turbulence, Rand D. A. and Young L.-S. (eds) pp. 164191, Springer Lecture Notes in Mathematics 898. Springer-Verlag: New York, Berlin, Heidelberg, 1981.
[32]Holmes P. J.. The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vibration 84 (1982), 173189.
[33]Holmes P. J. & Marsden J. E.. Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom. Comm. Math. Phys. 82 (1982), 523544.
[34]Holmes P. J. & Whitley D. C.. On the attracting set for Duffing's equation I: Analytical methods for small force and damping. In Partial Differential Equations and Dynamical Systems, Fitzgibbon W. III (ed.) pp. 211240, (1984).
[35]Huberman B. A., Crutchfield J. P. & Packard N. H.. Noise phenomena in Josephson junctions. Appl. Phys. Lett. 37 (1980), 750752.
[36]Ito R.. Rotation sets are closed. Math. Proc. Camb. Phil. Soc. 89 (1981), 107111.
[37]Jensen M. H., Bak P. & Bohr T.. Transition to chaos by interaction of resonances in dissipative systems: I. Circle Maps. Preprint, Cornell University, 1984.
[38]Katok A.. Some remarks on Birkhoff and Mather twist map theorems. Ergod. Th. & Dynam. Sys. 2 (1982), 185194.
[39]Katok A.. Periodic and Quasi-periodic orbits for twist maps. In Proceedings, Sitges 1982, Garrido L. (ed.). Springer-Verlag: Berlin, 1983.
[40]LeCalvez P.. Existence d'orbites quasi-périodiques dans les attracteurs de Birkhoff. Preprint, Orsay, 1985.
[41]Levi M.. Qualitative analysis of the periodically forced relaxation oscillations. Mem. Amer. Math. Soc. 244, (1981).
[42]Levi M.. Beating modes in the Josephson Junction. Preprint, Boston University, 1984.
[43]Levi M., Hoppensteadt F. & Miranker W.. Dynamics of the Josephson junction. Quart. Appl. Math. 35 (1978), 167198.
[44]Levinson N.. A second order differential equation with singular solutions. Annals of Math. 50 (1949), 127153.
[45]Mather J. N.. Existence of quasi-periodic orbits for twist homeomorphisms of the annulus. Topology 21 (1982), 457467.
[46]Mather J. N.. Non-uniqueness of solutions of Percival's Euler-Lagrange Equation. Comm. Math. Phys. 86 (1982), 465476.
[47]Mather J. N.. More Denjoy minimal sets for area preserving diffeomorphisms. Preprint, Princeton University, 1984.
[48]Matisoo J.. Josephson-type superconductive tunnel junctions and applications. IEEE Transactions on Magnetics 5 (1969), 848873.
[49]Melnikov V. K.. On the stability of the center for time periodic perturbations. Trans. Moscow Math. Soc. 12 (1963), 157.
[50]Moser J.. Stable and Random Motions in Dynamical Systems. Princeton University Press: Princeton, NJ, 1973.
[51]Newhouse S. E.. Lectures on dynamical systems. In ‘Dynamical Systems’ ed. Moser J. K.. Birkhauser: Boston, 1980.
[52]Newhouse S., Palis J. & Takens F.. Bifurcations and stability of families of diffeomorphisms. Publ Math. I.H.E.S. 57 (1983), 572.
[53]Odyniec M. & Chua L. O.. Josephson junction circuit analysis via integral manifolds. IEEE Transactions on Circuits and Systems CAS-30 (1983).
[54]Palis J.. On Morse Smale dynamical systems. Topology 8 (1969), 385405.
[55]Percival I. C.. Variational principles for invariant tori and cantori. In Symp. on Nonlinear Dynamics and Beam-Beam Interactions, Month M. and Herrara J. C. (eds.). Amer. Inst. Phys. Conf. Proc. 57, 310320, 1980.
[56]Poincaré H.. Mémoire sur les courbes définies par les équations différentielles I-IV, (Oeuvre I). Gauthier Villars: Paris, 18801890.
[57]Poincaré H.. Sur les équations de la dynamique et le problème de trois corps. Ada. Math. 13 (1890), 1270.
[58]Poincaré H.. Les Methodes Nouvelles de la Mécanique Celeste (3 Vols.) Gauthier-Villars: Paris, 1899.
[59]Salam F. M. A. & Sastry S. S.. Dynamics of the forced Josephson junction circuit: the regions of chaos. To appear in IEEE Transactions on Circuits and Systems.
[60]Sanders J. A. & Cushman R.. Limit cycles in the Josephson Equation. Rapport No. 264, (1984). Subfaculteit Wiskunde et Informatica, Vrije Universiteit, Amsterdam.
[61]Smale S.. Diffeomorphisms with many periodic points. In Differential and Combinatorial Topology, ed. Cairns S. S., pp. 6380. Princeton University Press: Princeton, N.J., 1963.
[62]Smale S.. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747817.
[63]Smale S.. The Mathematics of Time: Essays on Dynamical Systems, Economic Processes and Related Topics. Springer-Verlag: New York, Heidelberg, Berlin, 1980.
[64]Sparrow C. T.. The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer-Verlag: New York, Heidelberg, Berlin, 1982.
[65]Veerman P.. Symbolic dynamics and rotation numbers. To appear in Physica A (1986).
[66]York J. A. & Alligood K. T.. Cascades of period-doubling bifurcations: a prerequisite for horseshoes. Bull. Amer. Math. Soc. 9 (1983), 319322.
[67]Zehnder E.. Homoclinic points near elliptic fixed points. Comm. Pure. Appl. Math. 26 (1973), 141182.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 26 *
Loading metrics...

Abstract views

Total abstract views: 60 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.