Skip to main content Accessibility help

Julia sets for holomorphic endomorphisms of ℂn

  • Stefan-M. Heinemann (a1)


We give a definition for a Julia set J(f) for generic classes of polynomial endomorphisms f: ℂn→ ℂn. For n = 1, our definition is equivalent to the usual one, which gives the points where the iterates of f do not form a normal family. Moreover, the Julia set J(f1 × … × fn) ⊂ ℂn for a product of one-dimensional polynomials fi: ℂ → ℂ turns out to be the product J(f1) × … × J(fn) of the associated Julia sets J(fi) ⊂ ℂ. For a special class of mappings f: ℂ2 → ℂ2 which is not of this simple type, the so-called Cantor skews, we investigate topological structure as well as measure theoretic aspects of the Julia sets obtained using our definition.



Hide All
[1] Beardon, A. F.. Iteration of Rational Functions (Graduate Texts in Mathematics 132). Springer, 1991.
[2] Bedford, E. and Taylor, B. A.. Fine topology, Šilov boundary and dd c. J. Functional Analysis 72 (1987), 225251.
[3] Brolin, H.. Invariant sets under iteration of rational functions. Arkiv för Matematik 6 (1965), 103144.
[4] Dieudonné, J.. Grundzüge der modernen Analysis l (Logik und Grundlagen der Mathematik 8). Vieweg, 1985.
[5] Gaier, D.. Vorlesungen über Approximation im Komplexen. Birkhäuser, 1980.
[6] Gelfand, I. R., Raikow, D. A. and Schilow, G. E.. Kommutative normierte Algebren. VEB Verlag der Wissenschaften, Berlin, 1964.
[7] Grauert, H. and Remmert, R.. Coherent Analytic Sheaves. Springer, 1984.
[8] Gromov, M.. On the entropy of holomorphic mappings. Preprint d'Institut des Hautes Etudes scientifiques.
[9] Heinemann, S. M.. Iteration holomorpher Abbildungen in Cn. Diplomarbeit Universität Göttingen, 1993.
[10] Heinemann, S. M.. Dynamische Aspekte holomorpher Abbildungen in Cn. Dissertation Universität Göttingen, 1994.
[11] Jank, G. and Volkmann, L.. Meromorphe Funktionen und Differentialgleichungen. UTB: Große Reihe. Birkhäuser, 1985.
[12] Klimek, M.. Pluripotential Theory (London Mathematical Society Monographs 6). Oxford University Press, 1991.
[13] Lyubich, M. Yu.. Entropy properties of rational endomorphisms of the Riemann sphere. Ergod. Th. & Dynam. Sys. 3 (1983), 351385.
[14] Rudin, W.. Function Theory in the Unit Ball of Cn (Grundlehren der mathematischen Wissenschaften 241). Springer, 1980.
[15] Ruelle, D.. Repellers for real analytic maps. Ergod. Th. & Dynam. Sys. 2 (1982), 99108.
[16] Shafarevich, I. R.. Basic Algebraic Geometry. (Springer study edition.) Springer, 1974.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed