Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T21:36:37.677Z Has data issue: false hasContentIssue false

Large deviation principles for non-uniformly hyperbolic rational maps

Published online by Cambridge University Press:  10 May 2010

HENRI COMMAN
Affiliation:
Institute of Mathematics, Pontifical Catholic University of Valparaiso, Chile (email: henri.comman@ucv.cl)
JUAN RIVERA-LETELIER
Affiliation:
Facultad de Matemáticas, Campus San Joaquín, P. Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile (email: riveraletelier@mat.puc.cl)

Abstract

We show some level-2 large deviation principles for rational maps satisfying a strong form of non-uniform hyperbolicity, called ‘Topological Collet–Eckmann’. More precisely, we prove a large deviation principle for the distribution of iterated preimages, periodic points, and Birkhoff averages. For this purpose we show that each Hölder continuous potential admits a unique equilibrium state, and that the pressure function can be characterized in terms of iterated preimages, periodic points, and Birkhoff averages. Then we use a variant of a general result of Kifer.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Araújo, V.. Large deviations bound for semiflows over a non-uniformly expanding base. Bull. Braz. Math. Soc. (N.S.) 38(3) (2007), 335376.CrossRefGoogle Scholar
[2]Aspenberg, M.. The Collet–Eckmann condition for rational functions on the Riemann sphere. PhD Thesis, 2004.Google Scholar
[3]Baldi, P.. Large deviations and stochastic homogenization. Ann. Mat. Pura Appl. (4) 151 (1988), 161177.CrossRefGoogle Scholar
[4]Chernoff, H.. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23 (1952), 493507.CrossRefGoogle Scholar
[5]Comman, H.. Criteria for large deviations. Trans. Amer. Math. Soc. 355(7) (2003), 29052923, electronic.CrossRefGoogle Scholar
[6]Comman, H.. Variational form of the large deviation functional. Statist. Probab. Lett. 77(9) (2007), 931936.CrossRefGoogle Scholar
[7]Comman, H.. Strengthened large deviations for rational maps and full shifts, with unified proof. Nonlinearity 22(6) (2009), 14131429.CrossRefGoogle Scholar
[8]Cramér, H.. Sur un nouveau théorème-limite de la théorie des probabilités. Actualités Sci. Indust. 736 (1938), 523.Google Scholar
[9]Denker, M.. Probability theory for rational maps. Probability Theory and Mathematical Statistics (St. Petersburg, 1993). Gordon and Breach, Amsterdam, 1996, pp. 2940.Google Scholar
[10]Dujardin, R. and Favre, C.. Distribution of rational maps with a preperiodic critical point. Amer. J. Math. 130(4) (2008), 9791032.CrossRefGoogle Scholar
[11]Dobbs, N.. Measures with positive Lyapunov exponent and conformal measures in rational dynamics. Preprint, 2008, arXiv:0804.3753v1.Google Scholar
[12]Denker, M., Przytycki, F. and Urbański, M.. On the transfer operator for rational functions on the Riemann sphere. Ergod. Th. Dynam. Sys. 16(2) (1996), 255266.CrossRefGoogle Scholar
[13]Dunford, N. and Schwartz, J. T.. Linear Operators. Part I. Wiley Classics Library. John Wiley & Sons Inc, New York, 1988. General Theory, with the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, a Wiley–Interscience Publication.Google Scholar
[14]Dinh, T.-C. and Sibony, N.. Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mapping. Preprint, 2008, arXiv:0810.0811v1.Google Scholar
[15]Denker, M. and Urbański, M.. Ergodic theory of equilibrium states for rational maps. Nonlinearity 4(1) (1991), 103134.CrossRefGoogle Scholar
[16]Denker, M. and Urbański, M.. On the existence of conformal measures. Trans. Amer. Math. Soc. 328(2) (1991), 563587.CrossRefGoogle Scholar
[17]Dembo, A. and Zeitouni, O.. Large Deviations Techniques and Applications, 2nd edn(Applications of Mathematics (New York), 38). Springer, New York, 1998.CrossRefGoogle Scholar
[18]Ellis, R. S.. Large deviations for a general class of random vectors. Ann. Probab. 12(1) (1984), 112.CrossRefGoogle Scholar
[19]Ellis, R. S.. Entropy, Large Deviations, and Statistical Mechanics (Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 271). Springer, New York, 1985.CrossRefGoogle Scholar
[20]Ekeland, I. and Temam, R.. Convex Analysis and Variational Problems (Studies in Mathematics and its Applications, 1). North-Holland Publishing Co, Amsterdam, 1976 (translated from the French).Google Scholar
[21]Ekeland, I. and Témam, R.. Convex Analysis and Variational Problems, English edition(Classics in Applied Mathematics, 28). Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999 (translated from the French).CrossRefGoogle Scholar
[22]Freire, A., Lopes, A. and Mañé, R.. An invariant measure for rational maps. Bol. Soc. Brasil. Mat. 14(1) (1983), 4562.CrossRefGoogle Scholar
[23]Gärtner, J.. On large deviations from an invariant measure. Teor. Vero. Primen. 22(1) (1977), 2742.Google Scholar
[24]Grigull, J.. Große Abweichungen und Fluktuationen für Gleichgewichtsmaße rationaler Abbildungen. PhD Thesis, 1993.Google Scholar
[25]Gromov, M.. On the entropy of holomorphic maps. Enseign. Math. (2) 49(3–4) (2003), 217235.Google Scholar
[26]Graczyk, J. and Świa̧tek, G.. Harmonic measure and expansion on the boundary of the connectedness locus. Invent. Math. 142(3) (2000), 605629.CrossRefGoogle Scholar
[27]Kifer, Y.. Large deviations in dynamical systems and stochastic processes. Trans. Amer. Math. Soc. 321(2) (1990), 505524.CrossRefGoogle Scholar
[28]Keller, G. and Nowicki, T.. Spectral theory, zeta functions and the distribution of periodic points for Collet–Eckmann maps. Commun. Math. Phys. 149(1) (1992), 3169.CrossRefGoogle Scholar
[29]Ljubich, M. J.. Entropy properties of rational endomorphisms of the Riemann sphere. Ergod. Th. & Dynam. Sys. 3(3) (1983), 351385.CrossRefGoogle Scholar
[30]Lopes, A. O.. Entropy and large deviation. Nonlinearity 3(2) (1990), 527546.CrossRefGoogle Scholar
[31]Mañé, R.. On the uniqueness of the maximizing measure for rational maps. Bol. Soc. Brasil. Mat. 14(1) (1983), 2743.CrossRefGoogle Scholar
[32]Melbourne, I. and Nicol, M.. Large deviations for nonuniformly hyperbolic systems. Trans. Amer. Math. Soc. 360(12) (2008), 66616676.CrossRefGoogle Scholar
[33]Makarov, N. and Smirnov, S.. On thermodynamics of rational maps. II. Non-recurrent maps. J. Lond. Math. Soc. (2) 67(2) (2003), 417432.CrossRefGoogle Scholar
[34]Parry, W.. Entropy and Generators in Ergodic Theory. W. A. Benjamin, Inc, New York, 1969.Google Scholar
[35]Plachky, D.. On a theorem of G. L. Sievers. Ann. Math. Stat. 42 (1971), 14421443.CrossRefGoogle Scholar
[36]Przytycki, F. and Rivera-Letelier, J.. Statistical properties of topological Collet–Eckmann maps. Ann. Sci. École Norm. Sup. (4) 40(1) (2007), 135178.CrossRefGoogle Scholar
[37]Przytycki, F. and Rivera-Letelier, J.. Nice inducing schemes and the thermodynamics of rational maps. 2008, arXiv:0806.4385v2.Google Scholar
[38]Przytycki, F., Rivera-Letelier, J. and Smirnov, S.. Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps. Invent. Math. 151(1) (2003), 2963.CrossRefGoogle Scholar
[39]Przytycki, F., Rivera-Letelier, J. and Smirnov, S.. Equality of pressures for rational functions. Ergod. Th. & Dynam. Sys. 24(3) (2004), 891914.CrossRefGoogle Scholar
[40]Przytycki, F.. On the Perron–Frobenius–Ruelle operator for rational maps on the Riemann sphere and for Hölder continuous functions. Bol. Soc. Brasil. Mat. (N.S.) 20(2) (1990), 95125.CrossRefGoogle Scholar
[41]Plachky, D. and Steinebach, J.. A theorem about probabilities of large deviations with an application to queuing theory. Period. Math. Hung. 6(4) (1975), 343345.CrossRefGoogle Scholar
[42]Pollicott, M. and Sharp, R.. Large deviations and the distribution of pre-images of rational maps. Commun. Math. Phys. 181(3) (1996), 733739.CrossRefGoogle Scholar
[43]Pollicott, M. and Sridharan, S.. Large deviation results for periodic points of a rational map. J. Dyn. Syst. Geom. Theor. 5(1) (2007), 6977.Google Scholar
[44]Pollicott, M., Sharp, R. and Yuri, M.. Large deviations for maps with indifferent fixed points. Nonlinearity 11(4) (1998), 11731184.CrossRefGoogle Scholar
[45]Przytycki, F. and Urbański, M.. Fractals in the plane, ergodic theory methods. Cambridge University Press. Available at http://www.math.unt.edu/∼urbanski and http://www.impan.edu.pl/∼feliksp, 2002 (to appear).Google Scholar
[46]Rey-Bellet, L. and Young, L.-S.. Large deviations in non-uniformly hyperbolic dynamical systems. Ergod. Th. & Dynam. Sys. 28(2) (2008), 587612.CrossRefGoogle Scholar
[47]Rees, M.. Positive measure sets of ergodic rational maps. Ann. Sci. École Norm. Sup. (4) 19(3) (1986), 383407.CrossRefGoogle Scholar
[48]Ruelle, D.. The mathematical structures of equilibrium statistical mechanics. Thermodynamic Formalism, 2nd edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2004.CrossRefGoogle Scholar
[49]Schaefer, H. H.. Topological Vector Spaces (Graduate Texts in Mathematics, 3). Springer, New York, 1971, third printing corrected.CrossRefGoogle Scholar
[50]Sievers, G. L.. On the probability of large deviations and exact slopes. Ann. Math. Stat. 40 (1969), 19081921.CrossRefGoogle Scholar
[51]Smirnov, S.. Symbolic dynamics and Collet–Eckmann conditions. Int. Math. Res. Not. 7 (2000), 333351.CrossRefGoogle Scholar
[52]Stratmann, B. O. and Urbanski, M.. Real analyticity of topological pressure for parabolically semihyperbolic generalized polynomial-like maps. Indag. Math. (N.S.) 14(1) (2003), 119134.CrossRefGoogle Scholar
[53]Takahashi, Y.. Entropy functional (free energy) for dynamical systems and their random perturbations. Stochastic Analysis (Katata, Kyoto, 1982) (North-Holland Mathematical Library, 32). North-Holland, Amsterdam, 1984, pp. 437467.Google Scholar
[54]Takahashi, Y.. Asymptotic behaviours of measures of small tubes: entropy, Liapunov’s exponent and large deviation. Dynamical Systems and Applications (Kyoto, 1987) (World Sci. Adv. Ser. Dynam. Systems, 5). World Scientific Publishing, Singapore, 1987, pp. 121.Google Scholar
[55]Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, New York, 1982.CrossRefGoogle Scholar
[56]Xia, H. and Fu, X.. Remarks on large deviation for rational maps on the Riemann sphere. Stoch. Dyn. 7(3) (2007), 357363.CrossRefGoogle Scholar
[57]Zinsmeister, M.. Formalisme Thermodynamique et Systèmes Dynamiques Holomorphes (Panoramas et Synthèses [Panoramas and Syntheses], 4). Société Mathématique de France, Paris, 1996.Google Scholar