Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T20:14:37.968Z Has data issue: false hasContentIssue false

Law of large numbers for certain cylinder flows

Published online by Cambridge University Press:  23 January 2013

PATRÍCIA CIRILO
Affiliation:
Universidade Estadual Paulista, Rua Cristóvão Colombo 2265, 15054-000, São José do Rio Preto, Brazil email prcirilo@ibilce.unesp.br
YURI LIMA
Affiliation:
Weizmann Institute of Science, Faculty of Mathematics and Computer Science, POB 26, 76100, Rehovot, Israel email yuri.lima@weizmann.ac.il
ENRIQUE PUJALS
Affiliation:
Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil email enrique@impa.br

Abstract

We construct new examples of cylinder flows, given by skew product extensions of irrational rotations on the circle, that are ergodic and rationally ergodic along a subsequence of iterates. In particular, they exhibit a law of large numbers. This is accomplished by explicitly calculating, for a subsequence of iterates, the number of visits to zero, and it is shown that such number has a Gaussian distribution.

Type
Research Article
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, J.. Rational ergodicity and a metric invariant for Markov shifts. Israel J. Math. 27 (2) (1977), 93123.Google Scholar
Aaronson, J.. Ergodic theory for inner functions of the upper half plane. Ann. Inst. H. Poincaré Sect. B (N.S.) 14 (3) (1978), 233253.Google Scholar
Aaronson, J.. An Introduction to Infinite Ergodic Theory (Mathematical Surveys and Monographs, 50). American Mathematical Society, Providence, RI, 1997.CrossRefGoogle Scholar
Aaronson, J., Denker, M. and Fisher, A.. Second order ergodic theorems for ergodic transformations of infinite measure spaces. Proc. Amer. Math. Soc. 114 (1) (1992), 115127.CrossRefGoogle Scholar
Aaronson, J. and Keane, M.. The visits to zero of some deterministic random walks. Proc. Lond. Math. Soc. 44 (3) (1982), 535553.CrossRefGoogle Scholar
Aaronson, J., Lemanćzyk, M., Mauduit, C. and Nakada, H.. Koksma’s inequality and group extensions of Kronecker transformations. Algorithms, Fractals, and Dynamics (Okayama/Kyoto, 1992). Plenum, New York, 1995, pp. 2750.CrossRefGoogle Scholar
Aaronson, J. and Sullivan, D.. Rational ergodicity of geodesic flows. Ergod. Th. & Dynam. Sys. 4 (2) (1984), 165178.CrossRefGoogle Scholar
Anosov, D. and Katok, A.. New examples in smooth ergodic theory. Ergodic diffeomorphisms. Trans. Moscow Math. Soc. 23 (1970), 135.Google Scholar
Baggett, L. and Merrill, K.. Smooth cocycles for an irrational rotation. Israel J. Math. 79 (2–3) (1992), 281288.Google Scholar
Conze, J.-P.. Ergodicité d’une transformation cylindrique. Bull. Soc. Math. France 108 (4) (1980), 441456 (in French).Google Scholar
Conze, J.-P. and Keane, M.. Ergodicité d’un flot cylindrique (Séminaire de Probabilités I, Exp. No. 5). Département de Mathématique et Informatique, Université de Rennes, 1976, 7 pp (in French).Google Scholar
Durrett, R.. Probability: Theory and Examples (The Wadsworth & Brooks/Cole Statistics/Probability Series). Wadsworth & Brooks/Cole, Pacific Grove, CA, 1991.Google Scholar
Fayad, B. and Lemańczyk, M.. On the ergodicity of cylindrical transformations given by the logarithm. Mosc. Math. J. 6 (4) (2006), 657672, 771–772.CrossRefGoogle Scholar
Fra̧czek, K.. On ergodicity of some cylinder flows. Fund. Math. 163 (2) (2000), 117130.CrossRefGoogle Scholar
Katok, A.. Combinatorial Constructions in Ergodic Theory and Dynamics (University Lecture Series, 30). American Mathematical Society, Providence, RI, 2003.CrossRefGoogle Scholar
Krygin, A.. Examples of ergodic cylindrical cascades. Mat. Zametki 16 (1974), 981991 (in Russian).Google Scholar
Ledrappier, F. and Sarig, O.. Unique ergodicity for non-uniquely ergodic horocycle flows. Discrete Contin. Dyn. Syst. 16 (2) (2006), 411433.Google Scholar
Oren, I.. Ergodicity of cylinder flows arising from irregularities of distribution. Israel J. Math. 44 (2) (1983), 127138.Google Scholar
Pask, D.. Ergodicity of certain cylinder flows. Israel J. Math. 76 (1–2) (1991), 129152.Google Scholar
Sarig, O.. Unique ergodicity for infinite measures. Proc. Inter. Congress Math. Hyderabad, 2010.Google Scholar
Schmidt, K.. Cocycles on Ergodic Transformation Groups (Macmillan Lectures in Mathematics, 1). Macmillan Company of India, 1977.Google Scholar
Schmidt, K.. A cylinder flow arising from irregularity of distribution. Compositio Math. 36 (3) (1978), 225232.Google Scholar