Skip to main content

Linearly recurrent subshifts have a finite number of non-periodic subshift factors

    • Published online: 01 August 2000

A minimal subshift $(X,T)$ is linearly recurrent (LR) if there exists a constant $K$ so that for each clopen set $U$ generated by a finite word, $u$, the return time to $U$, with respect to $T$, is bounded by $K|u|$. We prove that given a LR subshift $(X,T)$ the set of its non-periodic subshift factors is finite up to isomorphism. We also give a constructive characterization of these subshifts.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 109 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd March 2018. This data will be updated every 24 hours.