No CrossRef data available.
Published online by Cambridge University Press: 01 August 2000
A minimal subshift $(X,T)$ is linearly recurrent (LR) if there exists a constant $K$ so that for each clopen set $U$ generated by a finite word, $u$, the return time to $U$, with respect to $T$, is bounded by $K|u|$. We prove that given a LR subshift $(X,T)$ the set of its non-periodic subshift factors is finite up to isomorphism. We also give a constructive characterization of these subshifts.