Skip to main content Accessibility help
×
×
Home

A local ergodic theorem for non-uniformly hyperbolic symplectic maps with singularities

  • GIANLUIGI DEL MAGNO (a1) and ROBERTO MARKARIAN (a2)

Abstract

In this paper, we prove a criterion for the local ergodicity of non-uniformly hyperbolic symplectic maps with singularities. Our result is an extension of a theorem of Liverani and Wojtkowski.

Copyright

References

Hide All
[An]Anosov, D. V.. Geodesic flows on closed Riemannian manifolds of negative curvature. Proc. Steklov Inst. Math. 90 (1967), 1235.
[Ar]Arnold, V. I.. Mathematical Methods of Classical Mechanics. Springer, New York, 1997.
[Bu]Bunimovich, L. A.. On absolutely focusing mirrors. Ergodic Theory and Related Topics, III (Güstrow, Germany 1990). Springer, Berlin, 1992, pp. 6282.
[BS]Bunimovich, L. A. and Sinai, Ya. G.. The fundamental theorem of the theory of scattering billiards. Mat. Sb. (N.S.) 90(132) (1973), 415431.
[BG]Burns, K. and Gerber, M.. Continuous invariant cone families and ergodicity of flows in dimension three. Ergod. Th. & Dynam. Sys. 9 (1989), 1925.
[C]Chernov, N. I.. Local ergodicity of hyperbolic systems with singularities. Funct. Anal. Appl. 27 (1993), 5154.
[CH]Chernov, N. I. and Haskell, C.. Nonuniformly hyperbolic K-systems are Bernoulli. Ergod. Th. & Dynam. Sys. 16 (1996), 1944.
[CM]Chernov, N. I. and Markarian, R.. Chaotic Billiards (Mathematical Surveys and Monographs, 127). American Mathematical Society, Providence, RI, 2006.
[Do]Donnay, V.. Using integrability to produce chaos: billiards with positive entropy. Comm. Math. Phys. 141 (1991), 225257.
[Ho]Hopf, E.. Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung. Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939), 261304.
[KB]Katok, A. and Burns, K.. Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems. Ergod. Th. & Dynam. Sys. 14 (1994), 757785.
[KS]Katok, A. and Strelcyn, J.-M.. Invariant Manifolds, Entropy and Billiards. Smooth Maps with Singularities (Lecture Notes in Mathematics, 1222). Springer, New York, 1986.
[KSS]Krámli, A., Simányi, N. and Szász, D.. A ‘transversal’ fundamental theorem for semi-dispersing billiards. Comm. Math. Phys. 129 (1990), 535560; Erratum, Comm. Math. Phys. 138 (1991), 207–208.
[LW]Liverani, C. and Wojtkowski, M.. Ergodicity in Hamiltonian systems. Dynamics Reported: Expositions in Dynamical Systems. New Series Vol. 4. Springer, Berlin, 1995, pp. 130202.
[M1]Markarian, R.. Billiards with Pesin region of measure one. Comm. Math. Phys. 118 (1988), 8797.
[M2]Markarian, R.. The fundamental theorem of Sinai-Chernov for dynamical systems with singularities. Dynamical Systems (Santiago, 1990) (Pitman Research Notes in Mathematics, 285). Longman, Harlow, 1993, pp. 131158.
[OW]Ornstein, D. S. and Weiss, B.. On the Bernoulli nature of systems with hyperbolic structure. Ergod. Th. & Dynam. Sys. 18 (1998), 441456.
[P]Pesin, Ya. B.. Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys 32 (1977), 55114.
[S]Sinai, Ya. G.. Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russian Math. Surveys 25 (1970), 137189.
[SC]Sinai, Ya. G. and Chernov, N. I.. Ergodic properties of some systems of two-dimensional disks and three-dimensional balls. Russian Math. Surveys 42 (1987), 181207.
[W1]Wojtkowski, M.. Invariant families of cones and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 5 (1985), 145161.
[W2]Wojtkowski, M.. Principles for the design of billiards with nonvanishing Lyapunov exponents. Comm. Math. Phys. 105 (1986), 391414.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed