Hostname: page-component-6bb9c88b65-k72x6 Total loading time: 0 Render date: 2025-07-24T23:12:13.543Z Has data issue: false hasContentIssue false

Local generation of tilings

Published online by Cambridge University Press:  18 July 2025

MATHIEU HOYRUP*
Affiliation:
https://ror.org/02rzzjk74Université de Lorraine, CNRS, Inria, Nancy 54000, France (e-mail: tom.favereau@etu.mines-nancy.univ-lorraine.fr)

Abstract

In this article, we investigate the possibility of generating all the configurations of a subshift in a local way. We propose two definitions of local generation, explore their properties and develop techniques to determine whether a subshift satisfies these definitions. We illustrate the results with several examples.

MSC classification

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ballier, A., Durand, B. and Jeandel, E.. Structural aspects of tilings. STACS 2008, Proc. 25th Ann. Symp. on Theoretical Aspects of Computer Science (Bordeaux, France, February 21–23, 2008) (LIPIcs, 1). Ed. Albers, S. and Weil, P.. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany, 2008, pp. 6172.Google Scholar
Berthe, V., Ferenczi, S., Mauduit, C., and Siegel, A.. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Note Mathematical Series, 1794). Springer-Verlag, Heidelberg, 2002.Google Scholar
Briceño, R., McGoff, K. and Pavlov, R.. Factoring onto ${\mathbb{Z}}^d$ subshifts with the finite extension property. Proc. Amer. Math. Soc. 146(12) (2018), 5129–.CrossRefGoogle Scholar
Boyle, M.. Lower entropy factors of sofic systems. Ergod. Th. & Dynam. Sys. 3(4) (1983), 541557.CrossRefGoogle Scholar
Boyle, M., Pavlov, R. and Schraudner, M.. Multidimensional sofic shifts without separation and their factors. Trans. Amer. Math. Soc. 362(9) (2010), 46174653.CrossRefGoogle Scholar
Dennunzio, A., Formenti, E. and Provillard, J.. Non-uniform cellular automata: classes, dynamics, and decidability. Inform. and Comput. 215 (2012), 3246.CrossRefGoogle Scholar
Dolbilin, N.. The countability of a tiling family and the periodicity of a tiling. Discrete Comput. Geom. 13(3–4) (1995), 405414.CrossRefGoogle Scholar
de Vries, J.. Elements of Topological Dynamics (Mathematics and Its Applications, 257). Springer, Netherlands, 2013.Google Scholar
Favereau, T. and Hoyrup, M.. Local generation of tilings: the even bicolor Wang tilesets. Preprint, 2024, arXiv:2411.08939.Google Scholar
Furstenberg, H.. Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation. Math. Systems Theory 1(1) (1967), 149.CrossRefGoogle Scholar
Hanf, W.. Nonrecursive tilings of the plane. I. J. Symb. Log. 39(2) (1974), 283285.CrossRefGoogle Scholar
Janvresse, É., de la Rue, T. and Velenik, Y.. A note on domino shuffling. Electron. J. Combin. 13(1) (2006), R30.CrossRefGoogle Scholar
Jockusch, W., Propp, J. and Shor, P.. Random domino tilings and the arctic circle theorem. Preprint, 1998, arXiv:math/9801068.Google Scholar
Jukna, S.. Extremal Combinatorics - With Applications in Computer Science (Texts in Theoretical Computer Science. An EATCS Series). Springer, 2011.CrossRefGoogle Scholar
Lagae, A.. Wang Tiles in Computer Graphics (Synthesis Lectures on Computer Graphics and Animation). Morgan & Claypool Publishers, 2009.CrossRefGoogle Scholar
Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
Marcus, B.. Factors and extensions of full shifts. Monatsh. Math. 88 (1979), 239248.CrossRefGoogle Scholar
Myers, D.. Nonrecursive tilings of the plane. II. J. Symb. Log. 39(2) (1974), 286294.CrossRefGoogle Scholar
Propp, J.. Generalized domino-shuffling. Theoret. Comput. Sci. 303(2) (2003), 267301. Tilings of the Plane.CrossRefGoogle Scholar
Salo, V. and Törmä, I.. Constructions with countable subshifts of finite type. Fund. Inform. 126(2–3) (2013), 263300.Google Scholar