Skip to main content
×
Home
    • Aa
    • Aa

Lyapunov maps, simplicial complexes and the Stone functor

  • Joel W. Robbin (a1) and Dietmar A. Salamon (a2)
Abstract
Abstract

Let be an attractor network for a dynamical system ft: MM, indexed by the lower sets of a partially ordered set P. Our main theorem asserts the existence of a Lyapunov map ψ:MK(P) which defines the attractor network. This result is used to prove the existence of connection matrices for discrete-time dynamical systems.

Copyright
References
Hide All
[1]Cairns S. S.. A simple triangulation method for smooth manifolds. Bull. Amer. Math. Soc. 67 (1951), 389390.
[2]Cohen R. L., Jones J. D. S. & Segal G. B.. To appear.
[3]Conley C. C.. Isolated invariant sets and the Morse index. CBMS Reg. Conf. Series Math., Vol. 38. Amer. Math. Soc: Providence, RI 1978.
[4]Conley C. C.. The gradient structure of a flow. Ergod. Th. & Dynam. Sys. 8 (1988), 1126.
[5]Conley C. C. & Zehnder E.. Morse type index theory for flows and periodic solutions for Hamiltonian equations. Commun. Pure Appl. Math. 37 (1984), 207253.
[6]Eilenberg S. & Steenrod N.. Foundations of Algebraic Topology. Princeton, 1952.
[7]Folkman J.. The homology groups of a lattice. J. Math. & Mech. 15 (1966), 631636.
[8]Franzosa R.. Index fitrations and the homology index braid for partially ordered Morse decompositions, Amer. Math. Soc. Trans. 298 (1986), 193213.
[9]Franzosa R.. The continuation theory for Morse decompositions and connection matrices. Trans. Amer. Math. Soc. 310 (1988), 781803.
[10]Franzosa R.. The connection matrix theory for Morse decompositions. Trans. Amer. Math. Soc. 311 (1989), 561592.
[11]Johnstone P.. Stone spaces, Studies in Advanced Mathematics. Cambridge University Press: Cambridge, 1982.
[12]Kelly J.. General Topology. Van Nostrand, 1955.
[13]Mrozek M.. The Morse equation in Conley's index theory for homeomorphisms. Preprint, University of Krakow (1988).
[14]Palis J. & de Melo W.. Geometric Theory of Dynamical Systems. Springer-Verlag: New York, 1982.
[15]Robbin J. W. & Salamon D. A.. Dynamical systems, shape theory and the Conley index. Ergod. Th. & Dynam. Sys. 8 (1988), 375393.
[16]Rota G. C.. On the foundations of combinatorial theory. Z. Warscheinlichkeitstheorie und Verwandte Gebiete 2 (1964), 340368.
[17]Salamon D. A.. Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), 141.
[18]Salamon D.. Morse theory, the Conley index and Floer homology. Bull. L. M. S. 22 (1990), 113140.
[19]Segal G.. Classifying spaces and spectral sequences Publ. Math. IHES.
[20]Smale S.. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747817;
Reprinted in: The Mathematics of Time. Springer-Verlag: New York, 1980.
[21]Smoller J.. Shock Waves and Reaction Diffusion Equations. Springer-Verlag: New York, 1983.
[22]Spanier E.. Algebraic Topology. Springer-Verlag: New York, 1966.
[23]Stone M.. Topological representation of distributive lattices and Brouwerian logics. Casopis Pest. Mat. Fys. 67 (1937), 127
[24]Witten E.. Supersymmetry and Morse theory. J. Diff. Geom. 17 (1982), 661692.
[25]Zeeman E. C.. On the filtered differential group. Ann. Math. 66 (1957), 557585.
[26]Wilson W.. Smoothing derivative of functions and applications. Trans. Amer. Math. Soc. 139 (1969), 413428.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 60 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.