Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-14T06:15:11.641Z Has data issue: false hasContentIssue false

Measure-theoretic sequence entropy pairs and mean sensitivity

Published online by Cambridge University Press:  19 September 2023

FELIPE GARCÍA-RAMOS*
Affiliation:
Universidad Autonoma de San Luis Potosi, San Luis Potosi 78000, Mexico (e-mail: soygenn@gmail.com) Faculty of Mathematics and Computer Science, Jagiellonian University, Profesora Stanisława Łojasiewicza 6, 30-348 Kraków, Poland
VÍCTOR MUÑOZ-LÓPEZ
Affiliation:
Universidad Autonoma de San Luis Potosi, San Luis Potosi 78000, Mexico (e-mail: soygenn@gmail.com)

Abstract

We characterize measure-theoretic sequence entropy pairs of continuous actions of abelian groups using mean sensitivity. This addresses an open question of Li and Yu [On mean sensitive tuples. J. Differential Equations 297 (2021), 175–200]. As a consequence of our results, we provide a simpler characterization of Kerr and Li’s independence sequence entropy pairs ($\mu $-IN-pairs) when the measure is ergodic and the group is abelian.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbieri, S., García-Ramos, F. and Li, H.. Markovian properties of continuous group actions: algebraic actions, entropy and the homoclinic group. Adv. Math. 397 (2022), 108196.10.1016/j.aim.2022.108196CrossRefGoogle Scholar
Blanchard, F.. A disjointness theorem involving topological entropy. Bull. Soc. Math. France 121(4) (1993), 465478.10.24033/bsmf.2216CrossRefGoogle Scholar
Blanchard, F., Host, B., Maass, A., Martinez, S. and Rudolph, D.. Entropy pairs for a measure. Ergod. Th. & Dynam. Sys. 15(4) (1995), 621632.10.1017/S0143385700008579CrossRefGoogle Scholar
Chung, N.-P. and Li, H.. Homoclinic groups, IE groups, and expansive algebraic actions. Invent. Math. 199(3) (2015), 805858.10.1007/s00222-014-0524-1CrossRefGoogle Scholar
Darji, U. B. and García-Ramos, F.. Local entropy theory and descriptive complexity. Preprint, 2023, arXiv:2107.09263.Google Scholar
Darji, U. B. and Kato, H.. Chaos and indecomposability. Adv. Math. 304 (2017), 793808.10.1016/j.aim.2016.09.012CrossRefGoogle Scholar
Fuhrmann, G., Gröger, M. and Lenz, D.. The structure of mean equicontinuous group actions. Israel J. Math. 247(1) (2022), 75123.10.1007/s11856-022-2292-8CrossRefGoogle Scholar
García-Ramos, F.. Weak forms of topological and measure-theoretical equicontinuity: relationships with discrete spectrum and sequence entropy. Ergod. Th. & Dynam. Sys. 37(4) (2017), 12111237.10.1017/etds.2015.83CrossRefGoogle Scholar
García-Ramos, F., Jäger, T. and Ye, X.. Mean equicontinuity, almost automorphy and regularity. Israel J. Math. 243(1) (2021), 155183.10.1007/s11856-021-2157-6CrossRefGoogle Scholar
García-Ramos, F. and Li, H.. Local entropy theory and applications, manuscript in preparation.Google Scholar
García-Ramos, F. and Marcus, B.. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete Contin. Dyn. Syst. 39(2) (2019), 729746.10.3934/dcds.2019030CrossRefGoogle Scholar
Glasner, E. and Ye, X.. Local entropy theory. Ergod. Th. & Dynam. Sys. 29(2) (2009), 321356.10.1017/S0143385708080309CrossRefGoogle Scholar
Huang, W., Li, J., Thouvenot, J.-P., Xu, L. and Ye, X.. Bounded complexity, mean equicontinuity and discrete spectrum. Ergod. Th. & Dynam. Sys. 41(2) (2021), 494533.10.1017/etds.2019.66CrossRefGoogle Scholar
Huang, W., Lu, P. and Ye, X.. Measure-theoretical sensitivity and equicontinuity. Israel J. Math. 183(1) (2011), 233283.10.1007/s11856-011-0049-xCrossRefGoogle Scholar
Huang, W., Maass, A. and Ye, X.. Sequence entropy pairs and complexity pairs for a measure. Ann. Inst. Fourier (Grenoble) 54(4) (2004), 10051028.10.5802/aif.2041CrossRefGoogle Scholar
Kerr, D. and Li, H.. Independence in topological and C*-dynamics. Math. Ann. 338(4) (2007), 869926.10.1007/s00208-007-0097-zCrossRefGoogle Scholar
Kerr, D. and Li, H.. Combinatorial independence in measurable dynamics. J. Funct. Anal. 256(5) (2009), 13411386.10.1016/j.jfa.2008.12.014CrossRefGoogle Scholar
Kushnirenko, A. G.. On metric invariants of entropy type. Russian Math. Surveys 22(5) (1967), 5361.10.1070/RM1967v022n05ABEH001225CrossRefGoogle Scholar
Li, J., Liu, C., Tu, S. and Yu, T.. Sequence entropy tuples and mean sensitive tuples. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2023.5. Published online 20 February 2023.CrossRefGoogle Scholar
Li, J. and Tu, S. M.. Density-equicontinuity and density-sensitivity. Acta Math. Sin. (Engl. Ser.) 37(2) (2021), 345361.10.1007/s10114-021-0211-2CrossRefGoogle Scholar
Li, J. and Yu, T.. On mean sensitive tuples. J. Differential Equations 297 (2021), 175200.10.1016/j.jde.2021.06.032CrossRefGoogle Scholar
Lindenstrauss, E.. Pointwise theorems for amenable groups. Invent. Math. 146(2) (2001), 259295.10.1007/s002220100162CrossRefGoogle Scholar
Yu, T., Zhang, G. and Zhang, R.. Discrete spectrum for amenable group actions. Discrete Contin. Dyn. Syst. 41(12) (2021), 58715886.10.3934/dcds.2021099CrossRefGoogle Scholar