Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T22:32:58.063Z Has data issue: false hasContentIssue false

Multiplicity of topological systems

Published online by Cambridge University Press:  05 February 2024

DAVID BURGUET*
Affiliation:
Sorbonne Universite, LPSM, 75005 Paris, France (e-mail: ruxi.shi@upmc.fr)
RUXI SHI
Affiliation:
Sorbonne Universite, LPSM, 75005 Paris, France (e-mail: ruxi.shi@upmc.fr)

Abstract

We define the topological multiplicity of an invertible topological system $(X,T)$ as the minimal number k of real continuous functions $f_1,\ldots , f_k$ such that the functions $f_i\circ T^n$, $n\in {\mathbb {Z}}$, $1\leq i\leq k,$ span a dense linear vector space in the space of real continuous functions on X endowed with the supremum norm. We study some properties of topological systems with finite multiplicity. After giving some examples, we investigate the multiplicity of subshifts with linear growth complexity.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atzmon, A. and Olevskiĭ, A.. Completeness of integer translates in function spaces on R. J. Approx. Theory 87(3) (1996), 291327.CrossRefGoogle Scholar
Baxter, J. R.. A class of ergodic transformations having simple spectrum. Proc. Amer. Math. Soc. 27 (1971), 275279.CrossRefGoogle Scholar
Birkhoff, G. D.. Demonstration d’un theoreme elementaire sur les fonctions entieres. C. R. Math. Acad. Sci. Paris 189 (1929), 473475.Google Scholar
Boshernitzan, M.. A unique ergodicity of minimal symbolic flows with linear block growth. J. Anal. Math. 44(1) (1984), 7796.CrossRefGoogle Scholar
Boshernitzan, M. D.. A condition for unique ergodicity of minimal symbolic flows. Ergod. Th. & Dynam. Sys. 12(3) (1992), 425428.CrossRefGoogle Scholar
Bourdon, P. S. and Shapiro, J. H.. Cyclic phenomena for composition operators. Mem. Amer. Math. Soc. 125(596) (1997), x+105.Google Scholar
Burguet, D. and Shi, R.. Topological mean dimension of induced systems. Preprint, 2022, arXiv:2206.10508.Google Scholar
Cyr, V. and Kra, B.. Counting generic measures for a subshift of linear growth. J. Eur. Math. Soc. (JEMS) 21(2) (2019), 355380.CrossRefGoogle Scholar
Coornaert, M.. Topological Dimension and Dynamical Systems. Springer, Cham, 2015.CrossRefGoogle Scholar
Creutz, D. and Pavlov, R.. Low complexity subshifts have discrete spectrum. Forum Math. Sigma 11 (2023), e96.CrossRefGoogle Scholar
Creutz, D.. Measure-theoretically mixing subshifts of minimal word complexity. Preprint, 2023, arXiv:2206.10047.Google Scholar
Danilenko, A. I.. A survey on spectral multiplicities of ergodic actions. Ergod. Th. & Dynam. Sys. 33(1) (2013), 81117.CrossRefGoogle Scholar
Donoso, S., Durand, F., Maass, A. and Petite, S.. Interplay between finite topological rank minimal cantor systems, s-adic subshifts and their complexity. Trans. Amer. Math. Soc. 374(5) (2021), 34533489.CrossRefGoogle Scholar
Denker, M., Grillenberger, C. and Sigmund, K.. Ergodic Theory on Compact Spaces (Lecture Notes in Mathematics, 527). Springer, Berlin, 2006.Google Scholar
Durand, F. and Perrin, D.. Dimension Groups and Dynamical Systems—Substitutions, Bratteli Diagrams and Cantor Systems (Cambridge Studies in Advanced Mathematics, 196). Cambridge University Press, Cambridge, 2022.CrossRefGoogle Scholar
Espinoza, B.. The structure of low complexity subshifts. Preprint, 2023, arXiv:2305.03096.Google Scholar
Pytheas Fogg, N.. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in Mathematics, 1794). Eds. V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. Springer-Verlag, Berlin, 2002.CrossRefGoogle Scholar
Gutman, Y. and Tsukamoto, M.. Embedding minimal dynamical systems into Hilbert cubes. Invent. Math. 221(1) (2020), 113166.CrossRefGoogle Scholar
Glasner, E. and Weiss, B.. Quasi-factors of zero-entropy systems. J. Amer. Math. Soc. 8(3) (1995), 665686.Google Scholar
Javaheri, M.. Cyclic composition operators on separable locally compact metric spaces. Topology Appl. 258 (2019), 126141.CrossRefGoogle Scholar
Kakutani, S.. Strictly ergodic symbolic dynamical systems. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, CA, 1970/1971), Vol. II: Probability Theory. University of California Press, Berkeley, CA, 1972.Google Scholar
Katok, A.. Cocycles, cohomology and combinatorial constructions in ergodic theory. Smooth Ergodic Theory and its Applications (Seattle, WA, 1999) (Proceedings of Symposia in Pure Mathematics, 69). American Mathematical Society, Providence, RI, 2001, pp. 107173; in collaboration with E. A. Robinson, Jr.CrossRefGoogle Scholar
Kwiatkowski, J. and Lacroix, Y.. Multiplicity, rank pairs. J. Anal. Math. 71 (1997), 205235.CrossRefGoogle Scholar
Kwiatkowski, J.. Spectral isomorphism of Morse dynamical systems. Bull. Acad. Polon. Sci. Sér. Sci. Math. 29(3–4) (1981), 105114.Google Scholar
Lindenstrauss, E.. Mean dimension, small entropy factors and an embedding theorem. Publ. Math. Inst. Hautes Études Sci. 89(1) (1999), 227262.CrossRefGoogle Scholar
Lindenstrauss, E. and Tsukamoto, M.. Mean dimension and an embedding problem: an example. Israel J. Math. 199(2) (2014), 573584.CrossRefGoogle Scholar
Liardet, P. and Voln, D.. Sums of continuous and differentiable functions in dynamical systems. Israel J. Math. 98 (1997), 2960.CrossRefGoogle Scholar
Michel, P.. Stricte ergodicité d’ensembles minimaux de substitution. Théorie Ergodique. Eds. Conze, J. P. and Keane, M. S.. Springer, Berlin, 1976, pp. 189201.CrossRefGoogle Scholar
Newton, D. and Parry, W.. On a factor automorphism of a normal dynamical system. Ann. Math. Statist. 37 (1966), 15281533.CrossRefGoogle Scholar
Parasyuk, O. S.. Flows of horocycles on surfaces of constant negative curvature. Uspekhi Mat. Nauk (N.S.) 8(3(55)) (1953), 125126.Google Scholar
Queffélec, M.. Substitution Dynamical Systems-Spectral Analysis (Lecture Notes in Mathematics, 1294). Springer, Berlin, 2010.CrossRefGoogle Scholar