Skip to main content
×
Home
    • Aa
    • Aa

A new proof of the Brouwer plane translation theorem

  • John Franks (a1)
Abstract
Abstract

Let f be an orientation-preserving homeomorphism of ℝ2 which is fixed point free. The Brouwer ‘plane translation theorem’ asserts that every x0 ∈ ℝ2 is contained in a domain of translation for f i.e. an open connected subset of ℝ2 whose boundary is Lf(L) where L is the image of a proper embedding of ℝ in ℝ2, such that L separates f(L) and f−1(L). In addition to a short new proof of this result we show that there exists a smooth Morse function g: ℝ2 → ℝ such that g(f(x)) < g(x) for all x and the level set of g containing x0 is connected and non-compact (and hence the image of a properly embedded line).

Copyright
References
Hide All
[A]Andrea S.. Abh. Math. Sem. Univ. Hamburg 30 (1967), 61–61.
[BF]Barge Marcy & Franks John. Recurrent Sets for Planar Homeomorphisms. Preprint.
[B]Brouwer L. E. J.. Beweis des ebenen Translationssatzes. Math. Ann. 72 (1912), 3754.
[Br]Brown M.. A New Proof of Brouwer's Lemma on Translation Arcs. Houston J. Math. 10 (1984), 3541.
[Fa]Fathi A.. An orbit closing proof of Brouwer's lemma on translation arcs. L' enseignement Math. 33 (1987), 315322.
[G]Guillou Lucien. Le théorème de translation plane de Brouwer: une démonstration simplifiée menant à une nouvelle preuve du théorème de Poincaré-Birkhoff. Preprint.
[H]Hurley M.. Chain Recurrence and Attraction in Noncompact Spaces. Ergod. Th. & Dynam. Sys. 11 (1991), 709729.
[OU]Oxtoby J. & Ulam S.. Measure preserving homeomorphisms and metrical transitivity. Ann. Math. 42 (1941), 874920.
[S]Slaminka Edward E.. A Brouwer Translation Theorem for Free Homeomorphisms. Trans. Amer. Math. Soc. 306 (1988), 277291.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 185 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th October 2017. This data will be updated every 24 hours.