Skip to main content Accessibility help
×
×
Home

Non-smooth saddle-node bifurcations II: Dimensions of strange attractors

  • G. FUHRMANN (a1), M. GRÖGER (a2) and T. JÄGER (a1)

Abstract

We study the geometric and topological properties of strange non-chaotic attractors created in non-smooth saddle-node bifurcations of quasiperiodically forced interval maps. By interpreting the attractors as limit objects of the iterates of a continuous curve and controlling the geometry of the latter, we determine their Hausdorff and box-counting dimension and show that these take distinct values. Moreover, the same approach allows us to describe the topological structure of the attractors and to prove their minimality.

Copyright

References

Hide All
[1] Ambrosio, L. and Kirchheim, B.. Rectifiable sets in metric and Banach spaces. Math. Ann. 318(3) (2000), 527555.
[2] Anagnostopoulou, V. and Jäger, T.. Nonautonomous saddle-node bifurcations: random and deterministic forcing. J. Differential Equations 253(2) (2012), 379399.
[3] Bjerklöv, K.. Dynamics of the quasiperiodic Schrödinger cocycle at the lowest energy in the spectrum. Comm. Math. Phys. 272 (2005), 397442.
[4] Bjerklöv, K.. Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations. Ergod. Th. & Dynam. Sys. 25 (2005), 10151045.
[5] Bjerklöv, K. SNA’s in the quasi-periodic quadratic family. Comm. Math. Phys. 286(1) (2009), 137161.
[6] Bowen, R.. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153 (1971), 401414.
[7] Ding, M., Grebogi, C. and Ott, E.. Dimensions of strange nonchaotic attractors. Phys. Lett. A 137(4–5) (1989), 167172.
[8] Ditto, W. L., Rauseo, S., Cawley, R., Grebogi, C., Hsu, G.-H., Kostelich, E., Ott, E., Savage, H. T., Segnan, R., Spano, M. L. and Yorke, J. A.. Experimental observation of crisis-induced intermittency and its critical exponents. Phys. Rev. Lett. 63(9) (1989), 923926.
[9] Ditto, W. L., Spano, M. L., Savage, H. T., Heagy, S. N., Rauseo, J. and Ott, E.. Experimental observation of a strange nonchaotic attractor. Phys. Rev. Lett. 65(5) (1990), 533536.
[10] Feudel, U., Kurths, J. and Pikovsky, A.. Strange nonchaotic attractor in a quasiperiodically forced circle map. Physica D 88 (1995), 176186.
[11] Fuhrmann, G.. Strange attractors of forced one-dimensional systems: existence and geometry. PhD dissertation, Friedrich-Schiller-Universität Jena, 2015. https://wwwdb-thueringende/servlets/MCRFileNodeServlet/dbt_derivate_00032462/Diss/FUHRMANNpdf.
[12] Fuhrmann, G.. Non-smooth saddle-node bifurcations I: Existence of an SNA. Ergod. Th. & Dynam. Sys. 36(4) (2016), 11301155.
[13] Glendinning, P.. Global attractors of pinched skew products. Dyn. Syst. 17 (2002), 287294.
[14] Glendinning, P., Jäger, T. and Stark, J.. Strangely dispersed minimal sets in the quasiperiodically forced Arnold circle map. Nonlinearity 22(4) (2009), 835854.
[15] Grebogi, C., Ott, E., Pelikan, S. and Yorke, J. A.. Strange attractors that are not chaotic. Physica D 13 (1984), 261268.
[16] Gröger, M. and Jäger, T.. Dimensions of attractors in pinched skew products. Comm. Math. Phys. 320(1) (2013), 101119.
[17] Heagy, J. F. and Hammel, S. M.. The birth of strange nonchaotic attractors. Physica D 70 (1994), 140153.
[18] Herman, M.. Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58 (1983), 453502.
[19] Howroyd, J. D.. On Hausdorff and packing dimension of product spaces. Math. Proc. Cambridge Philos. Soc. 119(4) (1996), 715727.
[20] Jäger, T.. Quasiperiodically forced interval maps with negative Schwarzian derivative. Nonlinearity 16(4) (2003), 12391255.
[21] Jäger, T.. On the structure of strange nonchaotic attractors in pinched skew products. Ergod. Th. & Dynam. Sys. 27 (2007), 493510.
[22] Jäger, T.. Strange non-chaotic attractors in quasiperiodically forced circle maps. Comm. Math. Phys. 289(1) (2009), 253289.
[23] Keller, G.. A note on strange nonchaotic attractors. Fund. Math. 151(2) (1996), 139148.
[24] Milnor, J.. On the concept of attractor. Comm. Math. Phys. 99 (1985), 177195.
[25] Núñez, C. and Obaya, R.. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete Contin. Dyn. Syst. B 9 (2008), 701730.
[26] Pesin, Ya. B.. On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions. J. Stat. Phys. 71(3–4) (1993), 529547.
[27] Pesin, Ya. B.. Dimension Theory in Dynamical Systems (Chicago Lectures in Mathematics) . University of Chicago Press, Chicago, 1997.
[28] Prasad, A., Negi, S. S. and Ramaswamy, R.. Strange nonchaotic attractors. Internat. J. Bifur. Chaos 11(2) (2001), 291309.
[29] Romeiras, F. J., Bondeson, A., Ott, E., Antonsen, T. M. Jr and Grebogi, C.. Quasiperiodically forced dynamical systems with strange nonchaotic attractors. Physica D 26 (1987), 277294.
[30] Stark, J.. Transitive sets for quasi-periodically forced monotone maps. Dyn. Syst. 18(4) (2003), 351364.
[31] Stark, J. and Sturman, R.. Semi-uniform ergodic theorems and applications to forced systems. Nonlinearity 13(1) (2000), 113143.
[32] Young, L. S.. Dimension, entropy and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 2(1) (1982), 109124.
[33] Young, L.-S.. Lyapunov exponents for some quasi-periodic cocycles. Ergod. Th. & Dynam. Sys. 17 (1997), 483504.
[34] Zindulka, O.. Hentschel–Procaccia spectra in separable metric spaces. Real Analysis Exchange (Summer Symposium in Real Analysis XXVI) , 2002, pp. 115119 . See also unpublished note on http://mat.fsv.cvut.cz/zindulka/.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed