Hostname: page-component-cb9f654ff-hn9fh Total loading time: 0 Render date: 2025-09-08T07:24:59.688Z Has data issue: false hasContentIssue false

On the coincidence of the Hausdorff and box dimensions for some affine-invariant sets

Published online by Cambridge University Press:  08 September 2025

ZHOU FENG*
Affiliation:
Department of Mathematics, https://ror.org/00t33hh48 The Chinese University of Hong Kong , Shatin, Hong Kong

Abstract

Let $ K $ be a compact subset of the d-torus invariant under an expanding diagonal endomorphism with s distinct eigenvalues. Suppose the symbolic coding of K satisfies weak specification. When $ s \leq 2 $, we prove that the following three statements are equivalent: (A) the Hausdorff and box dimensions of $ K $ coincide; (B) with respect to some gauge function, the Hausdorff measure of $ K $ is positive and finite; (C) the Hausdorff dimension of the measure of maximal entropy on $ K $ attains the Hausdorff dimension of $ K $. When $ s \geq 3 $, we find some examples in which statement (A) does not hold but statement (C) holds, which is a new phenomenon not appearing in the planar cases. Through a different probabilistic approach, we establish the equivalence of statements (A) and (B) for Bedford–McMullen sponges.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Barański, K.. Hausdorff dimension of the limit sets of some planar geometric constructions. Adv. Math. 210(1) (2007), 215245.10.1016/j.aim.2006.06.005CrossRefGoogle Scholar
Barral, J. and Feng, D.-J.. Non-uniqueness of ergodic measures with full Hausdorff dimensions on a Gatzouras–Lalley carpet. Nonlinearity 24(9) (2011), 25632567.10.1088/0951-7715/24/9/010CrossRefGoogle Scholar
Barreira, L. M.. A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergod. Th. & Dynam. Sys. 16(5) (1996), 871927.10.1017/S0143385700010117CrossRefGoogle Scholar
Bedford, T.. Crinkly curves, Markov partitions and dimension. Phd Thesis, University of Warwick, 1984.Google Scholar
Bowen, R.. Periodic points and measures for Axiom $A$ diffeomorphisms. Trans. Amer. Math. Soc. 154 (1971), 377397.Google Scholar
Bowen, R.. Some systems with unique equilibrium states. Math. Systems Theory 8(3) (1974/75), 193202.10.1007/BF01762666CrossRefGoogle Scholar
Chung, K. L.. A Course in Probability Theory, 3rd edn. Academic Press, San Diego, CA, 2001.Google Scholar
Climenhaga, V. and Thompson, D. J.. Beyond Bowen’s specification property. Thermodynamic Formalism (Lecture Notes in Mathematics, 2290). Ed. M. Pollicott and S. Vaienti. Springer, Cham, 2021, pp. 382.10.1007/978-3-030-74863-0_1CrossRefGoogle Scholar
Das, T. and Simmons, D.. The Hausdorff and dynamical dimensions of self-affine sponges: a dimension gap result. Invent. Math. 210(1) (2017), 85134.10.1007/s00222-017-0725-5CrossRefGoogle ScholarPubMed
Davies, R. O. and Samuels, P.. Density theorems for measures of Hausdorff type. Bull. Lond. Math. Soc. 6(1) (1974), 3136.10.1112/blms/6.1.31CrossRefGoogle Scholar
Durrett, R.. Probability—Theory and Examples (Cambridge Series in Statistical and Probabilistic Mathematics, 49), 5th edn. Cambridge University Press, Cambridge, 2019.10.1017/9781108591034CrossRefGoogle Scholar
Falconer, K. J.. The Hausdorff dimension of self-affine fractals. Math. Proc. Cambridge Philos. Soc. 103(2) (1988), 339350.10.1017/S0305004100064926CrossRefGoogle Scholar
Falconer, K. J.. Dimensions and measures of quasi self-similar sets. Proc. Amer. Math. Soc. 106(2) (1989), 543554.10.1090/S0002-9939-1989-0969315-8CrossRefGoogle Scholar
Falconer, K. J.. Sub-self-similar sets. Trans. Amer. Math. Soc. 347(8) (1995), 31213129.10.1090/S0002-9947-1995-1264809-XCrossRefGoogle Scholar
Falconer, K. J.. Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. John Wiley & Sons, Hoboken, NJ, 2003.10.1002/0470013850CrossRefGoogle Scholar
Feng, D.-J.. Equilibrium states for factor maps between subshifts. Adv. Math. 226(3) (2011), 24702502.10.1016/j.aim.2010.09.012CrossRefGoogle Scholar
Feng, D.-J., Lo, C.-H. and Shen, S.. Uniformity of Lyapunov exponents for non-invertible matrices. Ergod. Th. & Dynam. Sys. 40(9) (2020), 23992433.10.1017/etds.2019.4CrossRefGoogle Scholar
Feng, D.-J. and Wang, Y.. A class of self-affine sets and self-affine measures. J. Fourier Anal. Appl. 11(1) (2005), 107124.10.1007/s00041-004-4031-4CrossRefGoogle Scholar
Fraser, J. M.. On the packing dimension of box-like self-affine sets in the plane. Nonlinearity 25(7) (2012), 20752092.10.1088/0951-7715/25/7/2075CrossRefGoogle Scholar
Furstenberg, H.. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967), 149.10.1007/BF01692494CrossRefGoogle Scholar
Gatzouras, D. and Peres, Y.. The variational principle for Hausdorff dimension: a survey. Ergodic Theory of Zd Actions (Warwick, 1993–1994) (London Mathematical Society Lecture Note Series, 228). Ed. M. Pollicott and K. Schmidt. Cambridge University Press, Cambridge, 1996, pp. 113125.Google Scholar
Gatzouras, D. and Peres, Y.. Invariant measures of full dimension for some expanding maps. Ergod. Th. & Dynam. Sys. 17(1) (1997), 147167.10.1017/S0143385797060987CrossRefGoogle Scholar
Jurga, N.. Nonexistence of the box dimension for dynamically invariant sets. Anal. PDE 16(10) (2023), 23852399.10.2140/apde.2023.16.2385CrossRefGoogle Scholar
Käenmäki, A. and Vilppolainen, M.. Dimension and measures on sub-self-affine sets. Monatsh. Math. 161(3) (2010), 271293.10.1007/s00605-009-0144-9CrossRefGoogle Scholar
Kenyon, R. and Peres, Y.. Hausdorff dimensions of sofic affine-invariant sets. Israel J. Math. 94 (1996), 157178.10.1007/BF02762702CrossRefGoogle Scholar
Kenyon, R. and Peres, Y.. Measures of full dimension on affine-invariant sets. Ergod. Th. & Dynam. Sys. 16(2) (1996), 307323.10.1017/S0143385700008828CrossRefGoogle Scholar
King, J. F.. The singularity spectrum for general Sierpiński carpets. Adv. Math. 116(1) (1995), 111.10.1006/aima.1995.1061CrossRefGoogle Scholar
Kolossváry, I.. The ${L}^q$ spectrum of self-affine measures on sponges. J. Lond. Math. Soc. (2) 108(2) (2023), 666701.10.1112/jlms.12767CrossRefGoogle Scholar
Lalley, S. P. and Gatzouras, D.. Hausdorff and box dimensions of certain self-affine fractals. Indiana Univ. Math. J. 41(2) (1992), 533568.10.1512/iumj.1992.41.41031CrossRefGoogle Scholar
Luzia, N.. Measure of full dimension for some nonconformal repellers. Discrete Contin. Dyn. Syst. 26(1) (2010), 291302.10.3934/dcds.2010.26.291CrossRefGoogle Scholar
Mattila, P.. Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability (Cambridge Studies in Advanced Mathematics, 44). Cambridge University Press, Cambridge, 1995.10.1017/CBO9780511623813CrossRefGoogle Scholar
McMullen, C.. The Hausdorff dimension of general Sierpiński carpets. Nagoya Math. J. 96 (1984), 19.10.1017/S0027763000021085CrossRefGoogle Scholar
Olivier, E.. Uniqueness of the measure with full dimension on sofic affine-invariant subsets of the 2-torus. Ergod. Th. & Dynam. Sys. 30(5) (2010), 15031528.10.1017/S0143385709000546CrossRefGoogle Scholar
Olsen, L.. Self-affine multifractal Sierpinski sponges in ${\mathbf{R}}^d$ . Pacific J. Math. 183(1) (1998), 143199.10.2140/pjm.1998.183.143CrossRefGoogle Scholar
Parry, W.. Intrinsic Markov chains. Trans. Amer. Math. Soc. 112 (1964), 5566.10.1090/S0002-9947-1964-0161372-1CrossRefGoogle Scholar
Peres, Y.. The packing measure of self-affine carpets. Math. Proc. Cambridge Philos. Soc. 115(3) (1994), 437450.10.1017/S0305004100072224CrossRefGoogle Scholar
Peres, Y.. The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure. Math. Proc. Cambridge Philos. Soc. 116(3) (1994), 513526.10.1017/S0305004100072789CrossRefGoogle Scholar
Qiu, H. and Wang, Q.. The Hausdorff measure and uniform fibre conditions for Barański carpet. Preprint, 2024, arXiv:2411.17018.Google Scholar
Rams, M.. Measures of maximal dimension for linear horseshoes. Real Anal. Exchange 31(1) (2005/06), 5562.10.14321/realanalexch.31.1.0055CrossRefGoogle Scholar
Rogers, C. A. and Taylor, S. J.. Functions continuous and singular with respect to a Hausdorff measure. Mathematika 8 (1961), 131.10.1112/S0025579300002084CrossRefGoogle Scholar
Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer-Verlag, New York–Berlin, 1982.10.1007/978-1-4612-5775-2CrossRefGoogle Scholar