Skip to main content Accessibility help

On the entropy of actions of nilpotent Lie groups and their lattice subgroups

  • A. H. DOOLEY (a1) and V. YA. GOLODETS (a1)


We consider a natural class of connected, simply connected nilpotent Lie groups which contains ℝn, the group of all triangular unipotent matrices over ℝ and many of its subgroups, and is closed under direct products. If , then is a lattice subgroup of G. We prove that if and Γ is a lattice subgroup of G, then a free ergodic measure-preserving action T of G on a probability space (X,ℬ,μ) has completely positive entropy (CPE) if and only if the restriction TΓ of T to Γ has CPE. We can deduce from this the following version of a well-known conjecture in this case: the action T has CPE if and only if T is uniformly mixing. Moreover, such T has a Lebesgue spectrum with infinite multiplicity. We further consider an ergodic free action T with positive entropy and suppose TΓ is ergodic for any lattice subgroup Γ of G. This holds, in particular, if the spectrum of T does not contain a discrete component. Then we show the Pinsker algebra Π(T) of T exists and coincides with the Pinsker algebras Π(TΓ) of TΓ for any lattice subgroup Γ of G. In this case, T always has Lebesgue spectrum with infinite multiplicity on the space ℒ20(X,μ)⊖ℒ20(Π(T)) , where ℒ20(Π(T)) contains all Π(T) -measurable functions from ℒ20(X,μ) . To prove these results, we use the following formula: h(T)=∣G(Γ)∣−1hK (TΓ) , where h(T) is the Ornstein–Weiss entropy of T, hK (TΓ) is a Kolmogorov–Sinai entropy of TΓ, and the number ∣G(TΓ)∣ is the Haar measure of the compact subset G(Γ) of G. In particular, h(T)=hK (TΓ1) , and hK (TΓ1)=∣G(Γ)∣−1hK (TΓ) . The last relation is an analogue of the Abramov formula for flows.



Hide All
[1]Abramov, L. M.. On the entropy of a flow. Trans. Amer. Math. Soc. 49(2) (1965), 167170.
[2]Avni, N.. Entropy theory of cross sections. GAFA Geom. Funct. Anal. 19 (2010), 15151538.
[3]Blanchard, F.. Partitions extremals de flots d’entropie infini. Z. Wahrsch. Verw. Gebiete 36 (1976), 129136.
[4]Connes, A., Feldman, J. and Weiss, B.. An amenable equivalence relation is generated by a single transformation. Ergod. Th. & Dynam. Sys. 1 (1981), 431450.
[5]Conze, J. P.. Entropie d’un groupe abelien de transformations. Z. Wahrsch. Verw. Gebiete 25 (1972), 1130.
[6]Cornfeld, I. P., Fomin, S. V. and Sinai, Ya. G.. Ergodic Theory. Springer, 1982.
[7]Danilenko, A. I.. Entropy theory from the orbital point of view. Monatsh. Math. 134 (2001), 121141.
[8]Danilenko, A. I. and Park, K. K.. Generators and Bernoulli factors for amenable actions and cocycles on their orbits. Ergod. Th. & Dynam. Sys. 22 (2002), 17151745.
[9]Dixmier, J.. Les Algèbres d’Operateurs dans l’Espace Hilbertien, 2nd edn. Gauthier-Villars, Paris, 1969.
[10]Dixmier, J.. Les C *-Algebres et Leurs Représentations. Gauthier-Villars, Paris, 1969.
[11]Dooley, A. H. and Golodets, V. Ya.. The spectrum of completely positive entropy actions of countable amenable groups. J. Funct. Anal. 196 (2002), 118.
[12]Dooley, A. H., Golodets, V. Ya., Rudolph, D. J. and Sinel’shchikov, S. D.. Non-Bernoulli systems with completely positive entropy. Ergod. Th. & Dynam. Sys. 28 (2008), 87124.
[13]Feldman, J.. r-entropy, equipartition and Ornstein’s isomorphism theorem in ℝn. Israel J. Math. 36 (1980), 321345.
[14]Feldman, J., Hahn, P. and Moore, C. C.. Orbit structure and countable sections for actions of continuous groups. Adv. Math. 28 (1978), 186230.
[15]Glasner, E.. Ergodic Theory via Joinings (Mathematical Surveys and Monographs, 101). American Mathematical Society, Providence, RI, 2003.
[16]Glasner, E., Thouvenot, J.-P. and Weiss, B.. Entropy theory without past. Ergod. Th. & Dynam. Sys. 20 (2000), 13551370.
[17]Golodets, V. and Sinel’shchikov, S.. On the entropy theory of finitely generated nilpotent group actions. Ergod. Th. & Dynam. Sys. 22 (2002), 17471771.
[18]Golodets, V. and Sinel’shchikov, S.. Complete positivity of entropy and non-Bernoullicity for transformation groups. Colloq. Math. 84/85 (2000), 421429.
[19]Gurevich, B. M.. Some existence conditions for K-decompositions for special flows. Trans. Moscow Math. Soc. 17 (1967), 99128.
[20]Gurevich, B. M.. Perfect partitions for ergodic flows. Funktsional. Anal. i Prilozhen. 11 (1977), 2023 (in Russian).
[21]Kamiński, B.. The theory of invariant partitions for ℤd-actions. Bull. Acad. Polon. Sci., Ser. Sci. Math. 29 (1981), 349362.
[22]Katok, A.. Fifty years of entropy in dynamics 1958–2007. J. Mod. Dyn. 1 (2007), 545596.
[23]Katznelson, I. and Weiss, B.. Commuting measure preserving transformations. Israel J. Math. 12 (1972), 161173.
[24]Kechris, A. S. and Miller, B. D.. Topics in Orbit Equivalence Theory (Lecture Notes in Mathematics, 1852). Springer, New York, 2004.
[25]Kieffer, J. C.. A generalized Shannon–McMillan theorem for the actions of amenable groups on a probability space. Ann. Probab. 3 (1975), 10311037.
[26]Kolmogorov, A. N.. A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl. Acad. Nauk SSSR 119 (1958), 861864 (in Russian).
[27]Mackey, G.. Ergodic theory and virtual groups. Math. Ann. 166 (1966), 187207.
[28]Mackey, G. W.. Borel structure in groups and their duals. Trans. Amer. Math. Soc. 85 (1957), 134169.
[29]Ornstein, D.. Ergodic Theory, Randomness and Dynamical Systems. Yale University Press, New Haven, 1974.
[30]Ornstein, D. and Weiss, B.. Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48 (1987), 1141.
[31]Pinsker, M. S.. Dynamical systems with completely positive and zero entropy. Dokl. Acad. Nauk SSSR 133 (1960), 10251026 (in Russian).
[32]Pitzkel, B. S.. On information futures of amenable groups. Dokl. Acad. Sci. USSR 223 (1975), 10671070 (in Russian).
[33]Raghunathan, M. S.. Discrete Subgroups of Lie Groups. Springer, Berlin–Heidelberg–Ney York, 1972.
[34]Reed, M. and Simon, B.. Methods of Modern Mathematical Physics I: Functional Analysis, Revised and Enlarged Edition. Academic Press, Inc., Boston–San Diego–New York–Sydney–Tokyo–Toronto, 1980.
[35]Riesz, F. and Sz-Nagy, B.. Leçons d’Analyse Fonctionnelle. Academiai Kiado, Budapest, 1972.
[36]Rokhlin, V. A.. Lectures on the entropy theory of transformations with invariant measure. Uspekhi Mat. Nauk. 22 (1967), 454 (in Russian).
[37]Rokhlin, V. A. and Sinai, Ya. G.. Construction and properties of invariant measurable partitions. Dokl. Akad. Nauk. SSSR 141 (1961), 10381041 (in Russian).
[38]Rosenthal, A.. Finite uniform generators for ergodic, finite entropy free actions of amenable groups. Probab. Theory Related Fields 77 (1988), 147166.
[39]Rudolph, D. J.. Fundamentals of Measurable Dynamics. Oxford University Press, Oxford, 1990.
[40]Rudolph, D. J.. A two-valued stepcoding for ergodic flows. Proceedings Mathematical Physics. Rennes, Sept, 1975, pp. 1421.
[41]Rudolph, D. J. and Weiss, B.. Entropy and mixing for amenable group actions. Ann. of Math. (2) 151 (2000), 11191150.
[42]Safonov, A. V.. Information pasts in groups. Izv. Acad. Sci. USSR 47 (1983), 421426 (in Russian).
[43]Sinai, J. G.. A weak isomorphism of transfomations with invariant measure. Amer. Math. Soc. Transl. Ser. 2 57 (1966), 123143.
[44]Thouvenot, J.-P.. Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèms dont l’un schéma de Bernolli. Israel J. Math. 21 (1975), 177207.
[45]Thouvenot, J.-P.. Entropy, Isomorphism and Equivalence in Ergodic Theory (Handbook of Dynamical Systems, 1A). North-Holland, Amsterdam, 2002, pp. 205237.
[46]Ward, T. and Zhang, Q.. The Abramov–Rokhlin entropy addition formula for amenable group actions. Monatsh. Math. 114 (1992), 317329.
[47]Weiss, B.. Actions of amenable groups. Topics in Dynamics and Ergodic Theory (London Mathematical Society Lecture Notes Series, 310). Eds. Bezuglyi, S. and Kolyada, S.. Cambridge University Press, Cambridge, 2003, pp. 226262.
[48]Weiss, B.. Monotileable amenable groups. Topology, Ergodic Theory, Real Algebraic Geometry (American Mathematical Society Translations, 202). Eds. Turaev, V. and Vershik, A.. American Mathematical Society, Providence, RI, 2001, pp. 257262.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed