No CrossRef data available.
Published online by Cambridge University Press: 21 July 2015
We consider random dynamical systems generated by a special class of Volterra quadratic stochastic operators on the simplex $S^{m-1}$ . We prove that in contrast to the deterministic set-up the trajectories of the random dynamical system almost surely converge to one of the vertices of the simplex
$S^{m-1}$ , implying the survival of only one species. We also show that the minimal random point attractor of the system equals the set of all vertices. The convergence proof relies on a martingale-type limit theorem, which we prove in the appendix.