Hostname: page-component-68c7f8b79f-qcl88 Total loading time: 0 Render date: 2025-12-17T09:36:55.457Z Has data issue: false hasContentIssue false

On the selection of subaction and measure for perturbed potentials

Published online by Cambridge University Press:  17 December 2025

RENAUD LEPLAIDEUR
Affiliation:
ISEA, Université de la Nouvelle-Caledonie, New Caledonia
JAIRO KRÁS MENGUE
Affiliation:
Departamento Interdisciplinar, Universidade Federal do Rio Grande do Sul, Tramandaí, Brazil

Abstract

We prove that when the Aubry set for a Lipschitz continuous potential is a subshift of finite type, then the pressure function converges exponentially fast to its asymptote as the temperature goes to 0. The speed of convergence turns out to be the unique eigenvalue for the matrix whose entries are the costs between the different irreducible pieces of the Aubry set. For a special case of Walters potential, we show that perturbations of that potential that go faster to zero than the pressure do not change the selection, neither for the subaction nor for the limit measure, a zero temperature.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baccelli, F. L., Cohen, G., Olsder, G. J. and Quadrat, J.-P.. Synchronization and Linearity. John Wiley & Sons, Ltd., Chichester, 1992.Google Scholar
Baraviera, A., Leplaideur, R. and Lopes, A.. Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra. IMPA, Rio de Janeiro, 2013; Preprint, 2013, arXiv:1305.2396v2.Google Scholar
Baraviera, A., Leplaideur, R. and Lopes, A.. Selection of ground states in the zero temperature limit for a one-parameter family of potentials. SIAM J. Appl. Dyn. Syst. 11 (2012), 243260.10.1137/110826333CrossRefGoogle Scholar
Baraviera, A., Lopes, A. and Mengue, J.. On the selection of subaction and measure for a subclass of potentials defined by P. Walters. Ergod. Th. & Dynam. Sys. 33 (2013), 13381362.10.1017/S014338571200034XCrossRefGoogle Scholar
Baraviera, A., Lopes, A. and Thieullen, P.. A large deviation principle for equilibrium states of Hölder potencials: the zero temperature case. Stoch.Dyn. 6 (2006), 7796.10.1142/S0219493706001657CrossRefGoogle Scholar
Bissacot, R., Garibaldi, E. and Thieullen, P.. Zero-temperature phase diagram for double-well type potentials in the summable variation class. Ergod. Th. & Dynam. Sys. 38(3) (2018), 863885.10.1017/etds.2016.57CrossRefGoogle Scholar
Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, 2nd edn. Ed. Chazottes, J.-R.. Springer-Verlag, Berlin, 2008.10.1007/978-3-540-77695-6CrossRefGoogle Scholar
Brémont, J.. Gibbs measures at temperature zero. Nonlinearity 16(2) (2003), 419426.10.1088/0951-7715/16/2/303CrossRefGoogle Scholar
Buzzi, J., Kloeckner, B. and Leplaideur, R.. Nonlinear thermodynamical formalism. Ann. H. Lebesgue 6 (2023), 14291477.10.5802/ahl.192CrossRefGoogle Scholar
Chazottes, J. R. and Hochman, M.. On the zero-temperature limit of Gibbs states. Comm. Math. Phys. 297(1) (2010), 265281.10.1007/s00220-010-0997-8CrossRefGoogle Scholar
Contreras, G.. Ground states are generically a periodic orbit. Invent. Math. 205 (2016), 38412.10.1007/s00222-015-0638-0CrossRefGoogle Scholar
Contreras, G., Lopes, A. O. and Thieullen, P.. Lyapunov minimizing measures for expanding maps of the circle. Ergod. Th. & Dynam. Sys. 21 (2001), 13791409.10.1017/S0143385701001663CrossRefGoogle Scholar
Conze, J. P. and Guivarc’h, Y.. Croissance des sommes ergodiques et principe variationnel. Manuscript circa 1993.Google Scholar
Coronel, D. and Rivera-Letelier, J.. Sensitive dependence of Gibbs measures at low temperatures. J. Stat. Phys. 160 (2015), 16581683.10.1007/s10955-015-1288-8CrossRefGoogle Scholar
Garibaldi, E. and Lopes, A.. On the Aubry–Mather theory for symbolic dynamics. Ergod. Th. & Dynam. Sys. 28(3) (2008), 791815.10.1017/S0143385707000491CrossRefGoogle Scholar
Jenkinson, O.. Ergodic optimization. Discrete Contin. Dyn. Syst. Ser. A 15 (2006), 197224.10.3934/dcds.2006.15.197CrossRefGoogle Scholar
Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of Mathematics and Its Applications, 54). Cambridge University Press, Cambridge, 1995.10.1017/CBO9780511809187CrossRefGoogle Scholar
Kempton, T.. Zero temperature limits of Gibbs equilibrium states for countable Markov shifts. J. Stat. Phys. 143 (2011), 795806.10.1007/s10955-011-0195-xCrossRefGoogle Scholar
Kucherenko, T. and Quas, A.. Asymptotic behavior of the pressure function for Hölder potentials. Preprint, 2023, arXiv:2302.14839.Google Scholar
Leplaideur, R.. A dynamical proof for the convergence of Gibbs measures at temperature zero. Nonlinearity 18 (2005), 28472880.10.1088/0951-7715/18/6/023CrossRefGoogle Scholar
Leplaideur, R.. Flatness is a criterion for selection of maximizing measures. J. Stat. Phys. 147(4) (2012), 728757.10.1007/s10955-012-0497-7CrossRefGoogle Scholar
Lopes, A. O., Mengue, J. K., Mohr, J. and Souza, R. R.. Entropy and variational principle for one-dimensional lattice systems with a general a priori probability: positive and zero temperature. Erg. Theo. Dyn. Sys. 35(6) (2015), 19251961.10.1017/etds.2014.15CrossRefGoogle Scholar
Mengue, J.. Zeta-Medidas e princípio dos Grandes Desvios. PhD Thesis, UFRGS, 2010; http://hdl.handle.net/10183/26002.Google Scholar
Mengue, J.. Large deviations for equilibrium measures and selection of subaction. Bull. Braz. Math. Soc. 49(1) (2018), 1742.10.1007/s00574-017-0044-xCrossRefGoogle Scholar
Parry, W. and Pollicott, M.. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188 (1990).Google Scholar
Savchenko, S. V.. Cohomological inequalities for finite topological Markov chains. Funct. Anal. Appl. 33 (1999), 236238.10.1007/BF02465212CrossRefGoogle Scholar
Walters, P.. A natural space of functions for the Ruelle operator theorem. Ergod. Th. & Dynam. Sys. 27 (2007), 13231348.10.1017/S0143385707000028CrossRefGoogle Scholar