[AKM65]
Adler, R. L., Konheim, A. G. and McAndrew, M. H.. Topological entropy. Trans. Amer. Math. Soc.
114 (1965), 309–319.

[BD99]
Besser, A. and Deninger, C..
*p*-adic Mahler measures. J. Reine Angew. Math.
517 (1999), 19–50.

[Bow71]
Bowen, R.. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc.
153 (1971), 401–414.

[Boy02]
Boyd, D. W.. Mahler’s measure and invariants of hyperbolic manifolds. Number Theory for the Millennium, I (Urbana, IL, 2000). A K Peters, Natick, MA, 2002, pp. 127–143.

[BRVD03]
Boyd, D. W., Rodriguez-Villegas, F. and Dunfield, N.. Mahler’s measure and the dilogarithm (II). *Preprint*, 2003, arXiv:0308041v2. [BV13]
Bergeron, N. and Venkatesh, A.. The asymptotic growth of torsion homology for arithmetic groups. J. Inst. Math. Jussieu
12(2) (2013), 391–447.

[Den09]
Deninger, C..
*p*-adic entropy and a *p*-adic Fuglede–Kadison determinant. Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin. Vol. I
*(Progress in Mathematics, 269)*
. Birkhäuser Boston, Boston, MA, 2009, pp. 423–442.

[DGB14]
Dikranjan, D. and Giordano Bruno, A.. The bridge theorem for totally disconnected LCA groups. Topology Appl.
169 (2014), 21–32.

[EW99]
Everest, G. and Ward, T.. Heights of Polynomials and Entropy in Algebraic Dynamics
*(Universitext)*
. Springer, London, 1999.

[Fox56]
Fox, R. H.. Free differential calculus. III. Subgroups. Ann. of Math. (2)
64 (1956), 407–419.

[GAS91]
González-Acuña, F. and Short, H.. Cyclic branched coverings of knots and homology spheres. Rev. Mat. Univ. Complut. Madrid
4(1) (1991), 97–120.

[GBV15]
Giordano Bruno, A. and Virili, S.. Algebraic Yuzvinski formula. J. Algebra
423 (2015), 114–147.

[Hil12]
Hillman, J.. Algebraic Invariants of Links
*(Series on Knots and Everything, 52)*
, 2nd edn. World Scientific, Hackensack, NJ, 2012.

[HMM06]
Hillman, J., Matei, D. and Morishita, M.. Pro-*p* link groups and *p*-homology groups. Primes and Knots
*(Contemporary Mathematics, 416)*
. American Mathematical Society, Providence, RI, 2006, pp. 121–136.

[Iwa59]
Iwasawa, K.. On 𝛤-extensions of algebraic number fields. Bull. Amer. Math. Soc. (N.S.)
65 (1959), 183–226.

[KM08]
Kadokami, T. and Mizusawa, Y.. Iwasawa type formula for covers of a link in a rational homology sphere. J. Knot Theory Ramifications
17(10) (2008), 1199–1221.

[KM13]
Kadokami, T. and Mizusawa, Y.. On the Iwasawa invariants of a link in the 3-sphere. Kyushu J. Math.
67(1) (2013), 215–226.

[Lal03]
Lalín, M. N.. Some examples of Mahler measures as multiple polylogarithms. J. Number Theory
103(1) (2003), 85–108.

[Lal04]
Lalín, M. N.. Mahler measure and volumes in hyperbolic space. Geom. Dedicata
107 (2004), 211–234.

[Le14]
Le, T.. Homology torsion growth and Mahler measure. Comment. Math. Helv.
89(3) (2014), 719–757.

[LW88]
Lind, D. A. and Ward, T.. Automorphisms of solenoids and *p*-adic entropy. Ergod. Th. & Dynam. Sys.
8(3) (1988), 411–419.

[Mih12]
Mihara, T.. Singular homology of non-archimedean analytic spaces and integration along cycles. *Preprint*, 2012, arXiv:1211.1422v1. [MM82]
Mayberry, J. P. and Murasugi, K.. Torsion-groups of abelian coverings of links. Trans. Amer. Math. Soc.
271(1) (1982), 143–173.

[Nog07]
Noguchi, A.. Zeros of the Alexander polynomial of knot. Osaka J. Math.
44(3) (2007), 567–577.

[Por04]
Porti, J.. Mayberry–Murasugi’s formula for links in homology 3-spheres. Proc. Amer. Math. Soc.
132(11) (2004), 3423–3431 (electronic).

[Ril90]
Riley, R.. Growth of order of homology of cyclic branched covers of knots. Bull. Lond. Math. Soc.
22(3) (1990), 287–297.

[Rol76]
Rolfsen, D.. Knots and Links
*(Mathematics Lecture Series, 7)*
. Publish or Perish, Berkeley, CA, 1976.

[Sak81]
Sakuma, M.. On the polynomials of periodic links. Math. Ann.
257(4) (1981), 487–494.

[Shn38]
Shnirel’man(Schnirelmann), L. G.. Sur les fonctions dans les corps normés et algébriquement fermés. Izv. Akad. Nauk SSSR Ser. Mat.
2(5–6) (1938), 487–498 (Russian).

[Smy81]
Smyth, C. J.. On measures of polynomials in several variables. Bull. Aust. Math. Soc.
23(1) (1981), 49–63.

[SW02]
Silver, D. S. and Williams, S. G.. Mahler measure, links and homology growth. Topology
41(5) (2002), 979–991.

[Tan17]
Tange, R.. Fox formulas for twisted Alexander invariants associated to representations of knot groups over rings of
-integers. *Preprint*, 2017, arXiv.

[Uek16]
Ueki, J.. On the Iwasawa 𝜇-invariants of branched **Z**
_{
p
} -covers. Proc. Japan Acad. Ser. A Math. Sci.
92(6) (2016), 67–72.

[Uek17]
Ueki, J.. On the Iwasawa invariants for links and Kida’s formula. Internat. J. Math.
28(6) (2017), 1750035, 30.

[Uek18]
Ueki, J.. The profinite completions of knot groups determine the Alexander polynomials. *Algebr. Geom. Topol.*, to appear. *Preprint*, 2018, arXiv:1702.03836, 13 pages. [Wal82]
Walters, P.. An Introduction to Ergodic Theory
*(Graduate Texts in Mathematics, 79)*
. Springer, New York, 1982.

[Was97]
Washington, L. C.. Introduction to Cyclotomic Fields
*(Graduate Texts in Mathematics, 83)*
, 2nd edn. Springer, New York, 1997.

[Web79]
Weber, C.. Sur une formule de R. H. Fox concernant l’homologie des revêtements cycliques. Enseign. Math. (2)
25(3–4) (1980), 261–272.