## 1 Introduction

Partial dynamical systems have implicitly been used in mathematics long before the notion was formalized, at least since the study of differential equations. Indeed, the flow of a differentiable vector field can be naturally regarded as a partial action of the reals. More precisely, given a smooth vector field *v* on a manifold *M*, for $x\in M$ let $\phi _x$ be the unique solution to the differential equation $\phi '(t)=v(\phi (t))$ with initial condition $\phi _x(0)=x$, and let $I_x\subseteq \mathbb {R}$ be the largest (open) neighbourhood of $0$ on which $\phi _x$ is defined. For $t\in \mathbb {R}$, set

and let $\sigma _t\colon M_{-t}\to M_t$ be the diffeomorphism given by $\sigma _t(x)=\phi _x(t)$ for all $x\in M_{-t}$. The collection $ \sigma =\{\sigma _t,M_t\colon t\in \mathbb {R}\}$ satisfies the crucial property that $\sigma _{s+t}$ extends $\sigma _s\circ \sigma _t$, in the sense that whenever $x\in M_{-t}$ and $\sigma _t(x)$ belongs to $M_{-s}$, then *x* belongs to $M_{-s-t}$ and $\sigma _{s+t}(x)=\sigma _s(\sigma _t(x))$. In modern language, this condition asserts that $\sigma $ is a *partial action* of $\mathbb {R}$ on *M*.

Partial actions were originally introduced by Exel and McClanahan in the 1990s, by isolating and abstracting the conditions observed in the context described above: a partial action of a discrete group *G* on a topological space *X* is a collection $\{X_g\colon g\in G\}$ of open sets of *X* and homeomorphisms $\sigma _g\colon X_{g^{-1}}\to X_g$ such that $\sigma _1={\mathrm {id}}_X$ and $\sigma _{gh}$ extends $\sigma _g\circ \sigma _h$ wherever the decomposition is well defined. The notion of a *global* (or ordinary) action is obtained by taking $X_g=X$ for all $g\in G$. We refer the reader to a recent book [Reference Exel6] for a modern treatment of this topic and historical references. The study of partial actions (both on topological spaces and on $C^*$-algebras) has been very fruitful, and has shed new light on the study of several objects. For example, the fact that the solutions of a differential equation on a *compact* manifold are defined on all $\mathbb {R}$ can be easily proved in this more abstract setting; see Proposition 2.4 in [Reference Abadie1].

A typical example of a partial action is obtained by starting with a global action $\beta \colon G\to {\mathrm {Aut}}(B)$, a not necessarily invariant ideal *A* in *B*, and setting $A_g=A\cap \beta _g(A)$ with $\alpha _g=\beta _g|_{A_{g^{-1}}}$ for all $g\in G$. Partial actions obtained in this way are called *globalizable*, and the *globalization problem* involves determining whether a given partial action is globalizable and, if it is, describing its globalization; see §3 of [Reference Abadie1]. As it turns out, not every partial action is globalizable (a necessary and sufficient condition is given in [Reference Ferraro7]). Even when a globalization exists, identifying it is often a challenging task, and its dynamical properties may differ significantly from those of $\alpha $.

Given a partial group action $\alpha $ of a group *G* on a $C^*$-algebra *A*, one can construct its *crossed product* $A\rtimes _\alpha G$; see §I.8 in [Reference Exel6]. Large families of $C^*$-algebras can be naturally described as partial crossed products, typically with commutative $C^*$-algebras, even in situations where similar descriptions do not exist for global crossed products. For example, every unital approximately finite-dimensional (AF)-algebra arises as the crossed product of a partial homeomorphism of a totally disconnected compact space, whereas no unital AF-algebra arises as the crossed product of a homeomorphism.

It is therefore particularly important to develop tools to study partial crossed products. There have been a number of advances in this direction, for example, in reference to *K*-theory [Reference Exel5] and Takai duality [Reference Abadie1]. On the other hand, the study of partial actions of *finite* groups remains conspicuously underdeveloped. Indeed, and even in the globalizable case, virtually all averaging arguments (and their consequences) that are standard for global actions completely break down in this setting. The lack of approximate identities that are compatible with the partial action is also a source of difficulties in this setting. The goal of the present work is to make advances in the study of the structure of crossed products by partial actions of finite groups.

In the modern literature in $C^*$-dynamical systems, several Rokhlin-type properties have an increasingly central role in the study of crossed products; see [Reference Gardella9, Reference Gardella and Hirshberg12, Reference Gardella and Santiago15, Reference Hirshberg, Winter and Zacharias18, Reference Izumi19, Reference Osaka and Phillips21, Reference Szabo, Wu and Zacharias23]. Their wide and fruitful applicability in the global setting make the extension of this theory to the partial setting worthy of exploration.

Motivated by [Reference Hirshberg, Winter and Zacharias18], we define and study the notion of *Rokhlin dimension* in the partial setting; see Definition 2.1. The theory that we develop here exhibits phenomena that cannot be expected for global actions. Among others, the Rokhlin dimension of a globalizable partial action does not agree with that of its globalization; see Example 3.2. A notable exception is the unital case.

### Theorem 1.1. (Theorem 3.4)

Let $\alpha $ be a globalizable partial action of a finite group on a *unital* $C^*$-algebra, and let $\beta $ be its globalization. Then

Our original motivation was the study of the structure of the crossed product, particularly from the point of view of the classification programme for simple nuclear $C^*$-algebras; see [Reference Elliott and Toms4]. As it turns out, this is technically much more complicated than in the global setting, and tackling this problem required us to first develop a decomposition theory for partial actions of finite groups into iterated extensions of relatively simpler systems; see [Reference Abadie, Gardella and Geffen2] and particularly §6 there. Here, we prove the following.

### Theorem 1.2. (Theorem 4.7)

The following properties are inherited by crossed products or fixed point algebras by partial actions of finite groups with ${\mathrm {dim}_{\mathrm {Rok}}}<\infty $.

(1) Having finite nuclear dimension or decomposition rank; for example,

$$ \begin{align*} {\mathrm{dim}_{\mathrm{nuc}}}(A\rtimes_{\alpha} G)\leq (|G|-1)(\dim_{\mathrm{nuc}}(A)+1)(\dim_{\mathrm{Rok}}(\alpha)+1)+{\mathrm{dim}_{\mathrm{nuc}}}(A). \end{align*} $$(2) When ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}(\alpha )<\infty $, having finite stable/real rank; for example,

$$ \begin{align*}\mathrm{sr}(A\rtimes_\alpha G)\leq \frac{|G|({\mathrm{sr}}(A)+{\mathrm{dim}_{\mathrm{Rok}}^{\mathrm{c}}}(\alpha)+3)-2}{2}. \end{align*} $$(3) When ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}(\alpha )<\infty $, absorbing a given strongly self-absorbing $C^*$-algebra.

(See [ Reference Geffen16] for previously known results regarding nuclear dimension of *C* ^{⋆}-algebras attached to partial dynamical systems.)

For unital partial actions, even more can be said; see Theorem 4.10. Most remarkably, the Universal Coefficient Theorem (UCT) is preserved in the commuting towers version. In this case, we also show that $A^\alpha $ is Morita equivalent to $A\rtimes _\alpha G$ (see Theorem 4.9) a fact that rather surprisingly fails if unitality of *A* is dropped (see Example 4.8).

Our structural results for crossed products are complemented by the fact that partial actions with finite Rokhlin dimension are relatively common. For example, we show that this notion is equivalent to freeness in the commutative setting.

### Theorem 1.3. (Theorem 5.10)

Let $\sigma $ be a partial action of a finite group *G* on a locally compact Hausdorff space *X* with $\dim (X)<\infty $. Then ${\mathrm {dim}_{\mathrm {Rok}}}(\sigma )<\infty $ if and only if $\sigma $ is free, in which case we have

The result in the global case is implicit [Reference Gardella10, Reference Hirshberg and Phillips17] and is an easy consequence of the existence of local cross-sections for the quotient map $\pi \colon X\to X/G$. However, the proof in the partial setting is considerably more complicated, since for free partial actions there may not exist local cross-sections for $\pi $. The proof in our context is quite involved and occupies most of §5. The main technical ingredient is the fact (Proposition 5.6) that an extension of topological partial actions with finite Rokhlin dimension again has finite Rokhlin dimension. Roughly speaking, one needs to lift Rokhlin towers from the quotient to the algebra, while at the same time respecting the domains of the partial action. The fact that the coefficient algebra is commutative seems to be crucial for this lifting problem to have a solution.

## 2 Rokhlin dimension for partial actions of finite groups

In this section we define Rokhlin dimension for partial actions.

Definition 2.1. Let $\alpha =((A_g),(\alpha _g))_{g\in G}$ be a partial action of a finite group *G* on a $C^*$-algebra *A*. For $d\in {\mathbb {N}}$, we say that $\alpha $ has *Rokhlin dimension at most d*, and write ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )\leq d$, if for every $\varepsilon>0$ and every finite subset $F\subseteq A$, there exist positive contractions $f_g^{(j)}\in A_g$, for $g\in G$ and $j=0,\ldots ,d$, satisfying:

(1) $\|(\alpha _g(f_h^{(j)}x)-f_{gh}^{(j)}\alpha _g(x))a\|<\varepsilon $ for all $g,h\in G$, $j=0,\ldots , d$, $a\in F$ and $x\in A_{g^{-1}}\cap F$;

(2) $\|f_{g}^{(j)}f_{h}^{(j)}a\| < \varepsilon $ for $j=0,\ldots ,d$, $g,h \in G$ with $g \neq h$ and $a\in F$;

(3) $\|(\sum _{j=0}^{d}\sum _{g \in G} f_{g}^{(j)})a-a\|<\varepsilon $ for all $a\in F$;

(4) $\|(f_{g}^{(j)}b-bf_g^{(j)})a\| < \varepsilon $ for all $j =0,\ldots , d$, $g\in G$, and $a,b\in F$.

Moreover, we say that $\alpha $ has *Rokhlin dimension with commuting towers at most d*, and write ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}(\alpha )\leq d$, if for every $\varepsilon>0$ and every finite subset $F\subseteq A$, there exist positive contractions $f_g^{(j)}\in A_g$, for $g\in G$ and $j=0,\ldots ,d$, satisfying conditions (1)–(4) above, in addition to:

(5) $\|(f_{g}^{(j)}f_{h}^{(k)}-f_{h}^{(k)}f_{g}^{(j)})a\| < \varepsilon $ for all $j,k =0,\ldots , d$, $g,h\in G$ and $a\in F$.

In either case, we call the elements $f_g^{(j)}$ above *Rokhlin towers* for $(F,\varepsilon )$.

We define the *Rokhlin dimension* of $\alpha $ by

and define the *Rokhlin dimension with commuting towers* ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}(\alpha )$ similarly.

The multiplicative witness $a\in F$ that appears in conditions (1)–(5) also appears in the definition of Rokhlin dimension for *global* actions setting [Reference Hirshberg and Phillips17], and it can be omitted when *A* is unital. On the other hand, the witness $x\in F\cap A_{g^{-1}}$ is a conceptually new condition that cannot be omitted even if *A* is unital.

In the early stages of this project, it was unclear whether one should not instead require the stronger condition $\|\alpha _g(f_h^{(j)}x)-f_{gh}^{(j)}\alpha _g(x)\|<\varepsilon \|x\|$ for all $g,h\in G$, $j=0,\ldots ,d$, and *all* $x\in A_{g^{-1}}$. As it turns out, the stronger condition implies that the given partial action is in fact globalizable, which suggests that it was not the right notion to consider.

Unlike the case of global actions, the different elements within one tower are not ‘interchangeable’, as they tend to have different ‘sizes’. In fact, the positive contraction corresponding to the unit of the group is usually much larger than the others. The following is an extreme example of this situation.

Example 2.2. Let *G* be a finite group, and let *A* be a unital $C^*$-algebra. We define the *trivial partial action* of *G* on *A* by setting $A_g=\{0\}$ for $g\in G\setminus \{1\}$. This partial action has Rokhlin dimension zero, with Rokhlin towers given by $f_1=1_A$ and $f_g=0$ for $g\in G\setminus \{1\}$. Note that $A\rtimes _\alpha G=A$. Moreover, this is the only partial action of *G* on *A* with the 1-decomposition property (Definition 4.2); see Example 2.6 in [Reference Abadie, Gardella and Geffen2].

Next, we show that condition (1) in Definition 2.1 can be strengthened in the case of *unital* partial actions (that is, partial actions whose domains are unital).

Remark 2.3. Let $\alpha $ be a unital partial action of a finite group *G* on a $C^*$-algebra *A*, with units $1_g\in A_g$, for $g\in G$. Then $1_{gh}1_g=\alpha _g(1_h1_{g^{-1}})$ for all $g,h\in G$.

Proposition 2.4. Adopt the notation from Definition 2.1, and suppose that $\alpha $ is a unital partial action. For $g\in G$, denote by $1_g$ the unit of $A_g$. Then condition (1) in Definition 2.1 can be replaced by:

(1’) $\alpha _g(f_h^{(j)}1_{g^{-1}})=f_{gh}^{(j)}1_g$ for all $g,h\in G$, and for all $j=0,\ldots , d$.

Proof We prove the proposition for ${\mathrm {dim}_{\mathrm {Rok}}}$, since the proof for ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}$ is analogous. Using the identity $x=x1_{g^{-1}}$ for all $x\in A_{g^{-1}}$ and $g\in G$, one easily shows that (1’) implies the following identity for all $g,h\in G$, $j=0,\ldots ,d$, and all $x\in A_{g^{-1}}$:

This identity clearly implies (1). Conversely, let $\varepsilon>0$ and a finite subset $F \subseteq A$ be given. Without loss of generality, we assume that *F* consists of contractions and that $\{1_g\colon g\in G\}\subseteq F$. Set $\varepsilon _0={\varepsilon }/({|G|(d+1)+1})$ and find Rokhlin towers $f_g^{(j)}\in A_g$, for $g\in G$ and $j=0,\ldots ,d$, satisfying conditions (1), (2), (3), and (4) in Definition 2.1 for $(F,\varepsilon _0)$. Define positive contractions $\widetilde {f}_g^{(j)}\in A_g$, for all $g\in G$ and $j=0,\ldots ,d$, by $\widetilde {f}_g^{(j)}=\alpha _g(f_1^{(j)}1_{g^{-1}})$. Since $1_{g^{-1}}$ belongs to *F*, condition (1) for $f_1^{(j)}$ gives

for all $g\in G$ and all $j=0,\ldots ,d$. We claim that these elements satisfy the conditions in Definition 2.1 with (1) replaced by (1’).

We begin with (1’). For $g,h\in G$ and $j=0,\ldots ,d$, we have

Finally, conditions (2), (3) and (4) for the $\widetilde {f}_g^{(j)}$ follow by combining (2.1) with conditions (2), (3) and (4) for $f_g^{(j)}$. We omit the details.

Remark 2.5. In the context of Proposition 2.4, one can show that condition (2) can be replaced by:

(2’) $f_g^{(j)}f_h^{(j)}=0$ for all $g,h\in G$ with $g\neq h$ and for all $j=0,\ldots ,d$.

Since we do not need this, we omit its proof. We stress the fact that it is in general *not* possible to replace (1) and (2) *simultaneously* with (1’) and (2’), since the argument used to get (1’) from (1) does not preserve (2’), and *vice versa*.

We close this section by proving that the finite Rokhlin dimension behaves well with respect to restriction to invariant ideals and passage to equivariant quotients.

Proposition 2.6. Let *A* be a $C^*$-algebra, let *G* be a finite group, and let $\alpha $ be a partial action of *G* on *A*. Let *I* be a *G*-invariant ideal of *A*. We denote by $\alpha |_{I}$ and $\overline {\alpha }$ the induced partial actions of *G* on *I* and $A/I$, respectively. Then

Similar estimates hold for ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}$.

Proof We prove the results for ${\mathrm {dim}_{\mathrm {Rok}}}$, s ince the case of ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}$ is similar. We assume from now on that $d={\mathrm {dim}_{\mathrm {Rok}}}(\alpha )<\infty $, otherwise there is nothing to prove.

We prove ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha |_{I})\leq {\mathrm {dim}_{\mathrm {Rok}}}(\alpha )$ first. Let $\varepsilon>0$ and let a finite subset $F\subseteq I$ be given. Without loss of generality, we assume that *F* contains only contractions. Set $\varepsilon _0={\varepsilon }/({5|G|(d+1)+2})$. Apply Definition 2.1 to find Rokhlin towers $f_g^{(j)}\in A_g$ with $g\in G$ and $j=0,\ldots ,d$, for $(F, \varepsilon _0)$. By making a small renormalization, we may assume that $\sum _{g\in G}\sum _{j=0}^df_g^{(j)}$ is a contraction. By considering an approximate identity of *I* which is quasi-central in *A*, find $e\in I$ satisfying

for all $g\in G$, all $j=0,\ldots ,d$, and all $b\in \bigcup \nolimits _{g\in G}\alpha _g(F\cap A_{g^{-1}}).$

For $g\in G$ and $j=0,\ldots ,d$, set $\widetilde {f}_g^{(j)}=e^{{1}/{2}}f_g^{(j)}e^{{1}/{2}}$. We claim that $\{\widetilde {f}_g^{(j)}\colon g\in G, j=0,\ldots ,d\}$ are Rokhlin towers with respect to $(F, \varepsilon )$ for $\alpha |_I$. Note that $\widetilde {f}_g^{(j)}$ belongs to $A_g\cap I=I_g$. In order to check (1), let $g\in G$, let $x\in F\cap I_{g^{-1}}=F\cap A_{g^{-1}}$, let $a\in F$, and let $j=0,\ldots ,d$. Then

Thus $\|\alpha _g(\widetilde {f}_h^{(j)}x)a- \widetilde {f}_{gh}^{(j)}\alpha _g(x)a\|< 5\varepsilon _0<\varepsilon $, as desired. Condition (2) is easily checked and is left to the reader. For (3), let $a\in F$ be given. Then

where in the second-to-last step we use the fact that $\sum _{g\in G}\sum _{j=0}^df_g^{(j)}$ is a contraction. Finally, to check (4), let $g\in G, j=0,\ldots ,d$, and $a\in F$. Then

We turn to the inequality ${\mathrm {dim}_{\mathrm {Rok}}}(\overline {\alpha })\leq d={\mathrm {dim}_{\mathrm {Rok}}}(\alpha )$. Write $\pi \colon A\to A/I$ for the canonical equivariant map. Let $\overline {F}\subseteq A/I$ be a finite set and let $\varepsilon>0$. Let $F\subseteq A$ be any finite set satisfying $\pi (F)=\overline {F}$, and apply Definition 2.1 for $\alpha $ to find Rokhlin towers $f_g^{(j)}\in A_g$, with $g\in G$ and $j=0,\ldots ,d$, for $(F,\varepsilon )$. It is then immediate that the positive contractions $\overline {f}_g^{(j)}=\pi (f_g^{(j)})$ witness the fact that ${\mathrm {dim}_{\mathrm {Rok}}}(\overline {\alpha })\leq d$, as desired.

## 3 Rokhlin dimension and globalization

The basic example of a partial action is obtained by starting with a global action $\beta \colon G\to {\mathrm {Aut}}(B)$ and a (not necessarily invariant) ideal *A* in *B*, and then setting $A_g=A\cap \beta _g(A)$ and $\alpha _g=\beta _g|_{A_{g^{-1}}}$ for all $g\in G$. Actions of this form are called *globalizable*, since they are induced by a global action. Here is the precise definition.

Definition 3.1. Let *G* be a finite group, let *A* be a $C^*$-algebra, and let $\alpha $ be a partial action of *G* on *A*. A triple $(B,\beta ,\iota )$ consisting of a $C^*$-algebra *B*, a global action $\beta \colon G\to {\mathrm {Aut}}(B)$, and an embedding $\iota \colon A\to B$ is said to be an *enveloping action* for $\alpha $ if the following conditions are satisfied:

(a)

*A*(identified with $\iota (A)$) is an ideal in*B*;(b) $A_g=A\cap \beta _g(A)$ for all $g\in G$;

(c) $\alpha _g(a)=\beta _g(a)$ for all $a\in A_{g^{-1}}$ and all $g\in G$;

(d) $B=\overline {\mathrm {span}}\{\beta _g(a)\colon a\in A, g\in G \}$.

(If such a dynamical system $(B,\beta )$ exists, then it is unique up to an equivariant isomorphism extending the identity on *A* by Theorem 3.8 in [Reference Abadie1].) We say that $\alpha $ is *globalizable* if it has an enveloping action.

Not every partial action is globalizable, and even when it is, identifying its enveloping action may turn out to be challenging. Since there is a vast amount of literature concerning global actions with finite Rokhlin dimension, it would be very useful if one could relate the Rokhlin dimension of a (globalizable) partial action to its globalization. Unfortunately, these values do not necessarily agree.

Example 3.2. Set $X=S^1\setminus \{1\}$ and $U=X\setminus \{-1\}$. Let $\sigma \in \mathrm {Homeo}(U)$ be given by $\sigma (x)=-x$ for all $x\in U$. Denote by $\gamma $ the partial action of ${\mathbb {Z}}_2=\{-1,1\}$ on $C_0(X)$ determined by $\sigma $. Then $\gamma $ is globalizable, with globalization $\widetilde {\gamma }\colon {\mathbb {Z}}_2\to {\mathrm {Aut}}(C(S^1))$ induced by multiplication by $-1$.

Let $\delta \colon {\mathbb {Z}}_2\to {\mathrm {Aut}}({\mathbb {C}}\oplus {\mathbb {C}})$ be the flip action. Set $\alpha =\gamma \otimes \delta $, which is globalizable with globalization given by $(B,\beta )=(C(S^1)\oplus C(S^1),\widetilde {\gamma }\otimes \delta )$. It is clear that ${\mathrm {dim}_{\mathrm {Rok}}}(\beta )=0$, since we may take $p_{-1}=(1,0)$ and $p_1=(0,1)$ in *B*.

We claim that ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )\neq 0$. From now on, we identify *X* with $(0,2)$ and *U* with $(0,1)\cup (1,2)$. Arguing by contradiction, set $\varepsilon =3/16$ and take $I_{1}=[\varepsilon ,2-\varepsilon ]$ and $I_{-1}=[\varepsilon ,1-\varepsilon ]\cup [1+\varepsilon ,2-\varepsilon ]$, let $a\in C_0(X)$ be constant equal to 1 on $I_1$ and linear otherwise, and let $b=\sigma (b)\in C_0(U)=C_0(X)_{-1}$ be constant equal to 1 on $I_{-1}$ and linear otherwise. Let $f_{-1}=(\xi _{-1},\eta _{-1})\in C_0(U)\oplus C_0(U)$ and $f_1=(\xi _1,\eta _1)\in C_0(X)\oplus C_0(X)$ be a Rokhlin tower for $\alpha $ with respect to $F=\{(a,a),(b,b)\}$ and $\varepsilon $. Then we have:

(a) $|\xi _{-1}(\sigma (x))b(x)-\eta _1(x)b(x)|<\varepsilon $ and $|\eta _{-1}(\sigma (x))b(x)-\xi _1(x)b(x)|<\varepsilon $;

(b) $\xi _{-1}(x)\xi _1(x)a(x)<\varepsilon $ and $\eta _{-1}(x)\eta _1(x)a(x)<\varepsilon $;

(c) $(1-\xi _{-1}(x)-\xi _1(x))a(x)<\varepsilon $ and $(1-\eta _{-1}(x)-\eta _1(x))a(x)<\varepsilon $

for all $x\in X$. Upon making a small renormalization, we may assume that

for all $x\in I_1$. In particular, $\xi _1(1)=1$. Fix $x\in I_1$. Substituting (3.1) into (b), we get

which yields either $\xi _1(x)> 3/4$ or $\xi _1(x)<1/4$. Since $\xi _1$ is continuous, we must have either $\xi _1(I_{1})\subseteq (3/4,1]$ or $\xi _1(I_{1})\subseteq [0,1/4)$, and since $\xi _1(1)=1$, it must be $\xi _1(I_{1})\subseteq (3/4,1]$ and thus

An identical argument shows that

Taking now $x\in I_{-1}\subseteq I_1$, and noting that $b(x)=1$ and $\sigma (x)\in I_{-1}$ as well, we get

which is a contradiction. We conclude that ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )>0$.

We point out that one can construct towers that witness the fact that ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )\leq 1$, thus allowing us to conclude that ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )=1$. However, we do not need this, so we omit it.

In contrast with the previous example, we will show in Theorem 3.4 that for globalizable partial actions which act on *unital* $C^*$-algebras, their Rokhlin dimension (with or without commuting towers) agrees with that of their globalization. The result is by no means obvious and its proof is quite technical. The following lemma, which deals exclusively with global actions, represents the first step in proving the inequality ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )\leq {\mathrm {dim}_{\mathrm {Rok}}}(\beta )$.

Lemma 3.3. Let $\beta \colon G\to {\mathrm {Aut}}(B)$ be an action of a finite group *G* on a unital $C^*$-algebra *B*. Let *A* be a unital ideal in *B* satisfying $B=\overline {\mathrm {span}}\{\beta _g(a)\colon a\in A, g\in G \}$. If $d={\mathrm {dim}_{\mathrm {Rok}}}(\beta )$ is finite, then there exist Rokhlin towers $f_g^{(j)}\in B$ for $\beta $, satisfying condition (1’) in Proposition 2.4, such that $f_1^{(0)},\ldots ,f_1^{(d)}$ belong to *A*. A similar statement holds when ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}(\beta )<\infty $.

Proof We divide the proof into claims.

Claim 1. There exist projections $p_g\in A$, for $g\in G$, which are central in *B* and satisfy $1_B=\sum \nolimits _{g\in G}\beta _g(p_g)$.

Set $n=|G|$ and fix an enumeration $G=\{1_G=g_1,g_2,\ldots ,g_n\}$. Since $B\!=\!\!\sum _{g\in G}\!\beta _g\!(A)$, we have $1_B\leq \sum \nolimits _{g\in G}\beta _g(1_A)$. Note that the projections $\beta _g(1_A)$ are central and therefore together with $1_B$ generate a commutative $C^*$-algebra. In the rest of this claim, we regard $1_B$ and $\beta _g(1_A)$, for $g\in G$, as $\{0,1\}$-valued functions on some compact Hausdorff space and identify them with their supports. In particular, the support of $1_B$ is equal to the union of the supports of $\beta _g(1_A)$, for $g\in G$. By successively removing the double intersections, adding the triple intersections, and proceeding similarly for higher degrees, we can write $1_B$ as follows:

Observe that every element appearing in (3.4) is central in *B*. We now proceed to write the unit of *B* as a sum of orthogonal projections in the following manner. The first summand consists of all the elements appearing in (3.4) that have $\beta _{g_1}(1_A)$ as a factor. The second summand consists of all the elements appearing in (3.4) that have $\beta _{g_2}(1_A)$ as a factor but not $\beta _{g_1}(1_A)$. Continue inductively, and note that the process finishes after *n* steps; indeed, the only element left at the *n*th step is $\beta _{g_n}(1_A)$.

For $1\leq k\leq n$, the *k*th summand is

and we have $1_B=P_1+\cdots +P_n$. We want to see that $P_k$ is a projection. Set

Then $Q_{k}$ is the unit of the ideal $\sum \nolimits _{j>k}\beta _{g_j}(A)$ and therefore $Q_{k}$ is a projection. Moreover, an easy computation shows that $P_k=\beta _{g_k}(1_A)(1_B-Q_{k})$ and thus $P_k$ is also a projection. Note that $P_kP_\ell =0$ if $k\neq \ell $.

For $k=1,\ldots ,n$, set $p_k=\beta _{g_k}^{-1}(P_k)$, which can be written as

Then $p_k$ is a central projection, and it belongs to *A* because $1_A$ is a factor in each of its summands. Since $1_B=\sum _{k=1}^n \beta _{g_k}(p_k)$, this concludes the proof of Claim 1.

Let $\varepsilon>0$ and let $F\subseteq B$ be finite. Without loss of generality, *F* is $\beta $-invariant, contains $1_B$, and consists of contractions. Set $\varepsilon _0={\varepsilon }/{|G|^2(d+2)}$, and let $f_g^{(j)}\in B$, for $g\in G$ and $j=0,\ldots ,d$, be Rokhlin towers for $(F,\varepsilon _0)$. Using Proposition 2.4 for the equality, and by replacing $f_g^{(j)}$ with $({1}/({1+\varepsilon })) f_g^{(j)}$ for the inequality, we may assume

for all $g,h\in G$ and all $j=0,\ldots ,d$.

Claim 2. There are positive elements $x_g^{(j)}\in A$, for $g\in G$ and $j=0,\ldots ,d$, for which:

(2.a) $f_1^{(j)}=\sum \nolimits _{g\in G}\beta _g(x_g^{(j)})$;

(2.b) $\sum \nolimits _{g\in G} x_g^{(j)}\in A$ is a positive contraction;

(2.c) $\beta _h(x_g^{(j)})b\approx _{\varepsilon _0}b\beta _h(x_g^{(j)})$ for all $b\in F$, all $g,h\in G$ and all $j=0,\ldots ,d$; and

(2.d) $\|x_h^{(j)}\beta _g(x_t^{(j)})\|<\varepsilon _0$ for all $j=0,\ldots ,d$ and all $g,h,t\in G$ with $g\neq 1$.

Using Claim 1, fix projections $p_g\in A$, for $g\in G$, which are central in *B* and satisfy $1_B=\sum _{g\in G}\beta _g(p_g)$. For $j=0,\ldots ,d$, multiply both sides of the identity by $f_1^{(j)}$ to get

Set $x_{g}^{(j)}=f_{{g}^{-1}}^{(j)}p_g$ for all $g\in G$ and $j=0,\ldots ,d$. Since $p_g$ is central in *B* and belongs to *A*, it is clear that $x_g^{(j)}$ is a positive element in *A*. Condition (2.a) is satisfied by construction. Using centrality of $p_g$ at the second step, we get

and thus $\sum \nolimits _{g\in G}x_{g}^{(j)}$ is a positive contraction, verifying (2.b). In order to check (2.c), let $g,h\in G$ and $j=0,\ldots ,d$. Since $\beta _h(x_g^{(j)})=f_{hg^{-1}}^{(j)}\beta _h(p_g)$ and $p_g$ is central, it follows that

for all $b\in F$. We turn to (2.d). Given $j=0,\ldots ,d$ and $g,h,t\in G$ with $g\neq 1$, we have

If $gt^{-1}\neq h^{-1}$ then $\|f_{{h}^{-1}}^{(j)}f_{gt^{-1}}^{(j)}\|<\varepsilon _0$ and hence $\|x_h^{(j)}\beta _g(x_t^{(j)})\|<\varepsilon _0$. Otherwise, we have $gt^{-1}= h^{-1}$ and thus $g=h^{-1}t$. In particular, $h\neq t$. Then

since $\beta _t(p_t)$ is orthogonal to $\beta _h(p_h)$ by Claim 1. It follows that $x_h^{(j)}\beta _g(x_t^{(j)})=0$, and thus (2.d) is satisfied. This proves Claim 2.

Let $x_g^{(j)}\in A$, for $g\in G$ and $j=0,\ldots ,d$, be positive elements satisfying the conclusion of Claim 2. For $j=0,\ldots ,d$, set $a_1^{(j)}=\sum \nolimits _{g\in G}x_g^{(j)}\in A$. For $g\in G$, we set $a_g^{(j)}=\beta _g(a_1^{(j)})$. Then $\beta _g(a_h^{(j)})=a_{gh}^{(j)}$ for all $g,h\in G$ and $j=0,\ldots ,d$. In particular, condition (1) in Definition 2.1 is satisfied. To check condition (2), let $j=0,\ldots ,d$ and $g,h\in G$ with $g\neq h$. Then

Moreover, condition (3) follows from the following identity:

Let $b\in F$, $g\in G$ and $j=0,\ldots ,d$. In order to check condition (4) in Definition 2.1, and since $a_g^{(j)}=\beta _g(a_1^{(j)})$ and *F* is $\beta $-invariant, it suffices to take $g=1$. In this case, we have

This proves the first part of the lemma.

Assume now that ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}(\beta )=d<\infty $, and choose the Rokhlin towers as above to moreover satisfy condition (5) in Definition 2.1. For $g,h\in G$ and $j,k=0,\ldots ,d$, we get

We are now ready to prove the main result of this section: the Rokhlin dimension of a globalizable partial action on a unital $C^*$-algebra equals the Rokhlin dimension of its globalization. In particular, we obtain a large family of examples of partial actions with finite Rokhlin dimension.

Theorem 3.4. Let $\alpha $ be a globalizable partial action of a finite group *G* on a unital $C^*$-algebra *A*, and let $\beta \colon G\to {\mathrm {Aut}}(B)$ denote its globalization. Then

Proof The proofs for ${\mathrm {dim}_{\mathrm {Rok}}}$ and ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}$ are very similar, so we provide full details for ${\mathrm {dim}_{\mathrm {Rok}}}$ and indicate how one modifies the proof to obtain the result for ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}$. We divide the proof into two parts, namely the inequalities ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )\leq {\mathrm {dim}_{\mathrm {Rok}}}(\beta )$ and ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )\geq {\mathrm {dim}_{\mathrm {Rok}}}(\beta )$. Since *A* is unital and $\alpha $ is globalizable, it follows that $A_g$ is unital for all $g\in G$, with unit given by $1_g=1_A\beta _g(1_A)$.

To show that ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )\leq {\mathrm {dim}_{\mathrm {Rok}}}(\beta )$, it suffices to assume that $d={\mathrm {dim}_{\mathrm {Rok}}}(\beta )$ is finite. Let $\varepsilon>0$ and $F\subseteq A$ be given. Using Lemma 3.3, let $\widetilde {f}_g^{(j)}\in B$, for $g\in G$ and $j=0,\ldots ,d$, such that:

(a) $\beta _g(\widetilde {f}_h^{(j)})=\widetilde {f}_{gh}^{(j)}$ for all $g,h\in G$ and $j=0,\ldots ,d$;

(b) $\|\widetilde {f}_g^{(j)}\widetilde {f}_h^{(j)}\|<\varepsilon $ for all $j=0,\ldots ,d$ and all $g,h\in G$ with $g\neq h$;

(c) $\| 1_B-\sum \nolimits _{g\in G}\sum \nolimits _{j=0}^d \widetilde {f}_g^{(j)}\|\leq \varepsilon $;

(d) $\|\widetilde {f}_g^{(j)}b-b\widetilde {f}_g^{(j)}\|<\varepsilon $ for all $g\in G$, all $j=0,\ldots ,d$ and all $b\in F$.

Set $f_g^{(j)}=\widetilde {f}_g^{(j)}1_g\in A_g$ for all $g\in G$ and all $j=0,\ldots ,d$. We claim that these are Rokhlin towers for $\alpha $ with respect to $(F,\varepsilon )$. For $g,h\in G$ and $j=0,\ldots ,d$, we use at the second step that $\beta _g|_{A_{g^{-1}}}=\alpha _g$ to get

thus verifying condition (1) in Definition 2.1. Moreover, $\|f_g^{(j)}f_h^{(j)}\| \leq \|\widetilde {f}_g^{(j)}\widetilde {f}_h^{(j)}\|$ and hence condition (2) is also satisfied by (b) above. Since

it follows from (c) that condition (3) is also satisfied. Finally, given $b\in F$, $g\in G$ and $j=0,\ldots ,d$, we have

establishing condition (4). It follows that ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )\leq d$, as desired. Note that

for all $g,h\in G$ and $j,k=0,\ldots ,d$. Thus, if ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}(\beta )\leq d$ and the Rokhlin towers $\widetilde {f}_g^{(j)}$ for $\beta $ also satisfy condition (5) in Definition 2.1, then the Rokhlin towers $f_g^{(j)}$ for $\alpha $ also satisfy (5) and hence ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}(\alpha )\leq d$.

We turn to the inequality ${\mathrm {dim}_{\mathrm {Rok}}}(\beta )\leq {\mathrm {dim}_{\mathrm {Rok}}}(\alpha )$, so we set $d={\mathrm {dim}_{\mathrm {Rok}}}(\alpha )$ and assume that $d<\infty $. Let $\varepsilon>0$ and let $F\subseteq B$ be a finite subset. Without loss of generality, we assume that *F* contains $1_g$ for all $g\in G$ and that it is $\beta $-invariant. Since *B* is generated by the $\beta $-translations of *A* (condition (d) in Definition 3.1), there exist $a_g\in A$ for $g\in G$ such that $1_B=\sum \nolimits _{g\in G}\beta _g(a_g)$. Set $\varepsilon _0= {\varepsilon }/{|G|\max \nolimits _{g\in G}\|a_g\|}$. Using Proposition 2.4, let $f_g^{(j)}\in A_g$, for $g\in G$ and $j=0,\ldots ,d$, be positive contractions satisfying the following conditions:

(i) $\alpha _g(f_h^{(j)}1_{g^{-1}})=f_{gh}^{(j)}1_{g}$ for all $g,h\in G$ and $j=0,\ldots ,d$;

(ii) $\|f_g^{(j)}f_h^{(j)}\|<\varepsilon $ for all $j=0,\ldots ,d$ and all $g,h\in G$ with $g\neq h$;

(iii) $\|\sum \nolimits _{g\in G}\sum \nolimits _{j=0}^d f_g^{(j)}-1_A\|<\varepsilon $.

(iv) $\|f_g^{(j)}b-bf_g^{(j)}\|<\varepsilon $ for all $g\in G$, all $j=0,\ldots ,d$ and all $b\in F$.

For $g\in G$ and $j=0,\ldots ,d$, set $\widetilde {f}_g^{(j)}=\beta _g(f_1^{(j)})\in B$. We claim that the $\widetilde {f}_g^{(j)}$ are Rokhlin towers for $\beta $ with respect to $(F, \varepsilon )$. Condition (1) in Definition 2.1 is clearly satisfied. In order to check (2), let $j=0,\ldots ,d$ and $g,h\in G$ with $g\neq h$ be given. Using that $f_1^{(j)}=f_1^{(j)}1_A$ at the second step, and that $1_{g^{-1}h}=1_A\beta _{g^{-1}h}(1_A)$ at the third, we get

To check (3), it suffices to show that for any $a\in A$ and $h\in G$, we have

Indeed, once this is established, and since $1_B=\sum \nolimits _{h\in G}\beta _h(a_h)$, it will follow that

thus establishing (3). Let $a\in A$ and $h\in G$ be given; without loss of generality we assume that $\|a\|\leq 1$. Then:

as desired. Finally, to check condition (4), let $a\in F$, $g\in G$ and $j=0,\ldots ,d$ be given. Using at the last step that $\beta _{g^{-1}}(a)\in F$, we get

This shows that ${\mathrm {dim}_{\mathrm {Rok}}}(\beta )\leq {\mathrm {dim}_{\mathrm {Rok}}}(\alpha )$. Observe that the Rokhlin towers for $\beta $ that we constructed satisfy the following identity for all $j,k=0,\ldots ,d$ and $g,h\in G$:

By taking adjoints, we also get $\widetilde {f}_h^{(k)}\widetilde {f}_g^{(j)}= \beta _g(f_{g^{-1}h}^{(k)}f_1^{(j)})$. In particular,

Thus, if ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}(\alpha )\leq d$ and the Rokhlin towers $f_g^{(j)}$ for $\alpha $ also satisfy condition (5) in Definition 2.1, then the Rokhlin towers $\widetilde {f}_g^{(j)}$ for $\beta $ also satisfy (5) and hence ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}(\beta )\!\leq ~d$.

## 4 Structure of the crossed product

Since its introduction in [Reference Hirshberg, Winter and Zacharias18], the Rokhlin dimension has predominantly been used to study structural properties of the associated crossed products. Of greatest relevance are those properties related to the classification programme for nuclear $C^*$-algebras, such as the UCT, finiteness of the nuclear dimension, absorption of a strongly self-absorbing $C^*$-algebra [Reference Toms and Winter24], or divisibility properties on *K*-theory.

In this section, we explore the structure of the crossed products and fixed point algebras of partial actions with finite Rokhlin dimension. Our approach makes use of the decomposition property introduced and studied in [Reference Abadie, Gardella and Geffen2], which we recall in §4.1. For unital partial actions, a more direct argument can be given, which even yields better results (notably in the zero-dimensional case). In this setting, we show that the crossed product is Morita equivalent to the fixed point algebra, a fact that fails for general partial actions of finite Rokhlin dimension.

### 4.1 The decomposition property

An important ingredient in our study of partial actions with finite Rokhlin dimension is our previous work [Reference Abadie, Gardella and Geffen2] on decomposable partial actions. For the convenience of the reader, we make here a small digression.

Definition 4.1. Let *G* be a finite group. Given $n=1,\ldots ,|G|$, we define the *space of n-tuples* of *G* to be

For $g\in G$, we set $\mathcal {T}_n(G)_{g}=\{\tau \in \mathcal {T}_n(G)\colon g\in \tau \}$. There is a canonical partial action $\texttt {Lt}$ of *G* on $\mathcal {T}_n(G)$, with $\texttt {Lt}_g\colon \mathcal {T}_n(G)_{g^{-1}}\to \mathcal {T}_n(G)_g$ induced by left translation by *g*. For $\tau \in \mathcal {T}_n(G)$, we write $G\cdot \tau \subseteq \mathcal {T}_n(G)$ for the orbit of $\tau $ with respect to $\texttt {Lt}$.

We will adopt the following convention. Let $\alpha $ be a partial action of a finite group *G* on a $C^*$-algebra *A*, and let $n=1,\ldots ,|G|$. For $\tau \in \mathcal {T}_n(G)$, we write $A_{\tau }$ for the ideal $A_{\tau }=\bigcap _{g\in \tau } A_{g}$. Then $\alpha _{g}(A_{\tau })=A_{g\tau }$ for $g\in G$ and $\tau \in \mathcal {T}_n(G)_{g^{-1}}$. For $\tau \in \mathcal {T}_n(G)$, we set $A_{G\cdot \tau }=\sum _{g\in \tau ^{-1}} A_{g\tau }$. When $A=C_0(X)$ for a locally compact Hausdorff space *X*, we write $X_\tau $ for the spectrum of $C_0(X)_\tau $, and identify it canonically with $\bigcap _{g\in \tau }X_g$. We use similar notation for $X_{G\cdot \tau }$.

Definition 4.2. Let *G* be a finite group, let *A* be a $C^*$-algebra, and let $\alpha =((A_g)_{g\in G}, (\alpha _g)_{g\in G})$ be a partial action of *G* on *A*. Given $n=1,\ldots ,|G|$, we say that $\alpha $ has the *n-decomposition property* if:

(a) $A=\overline {\sum \nolimits _{\tau \in \mathcal {T}_n(G)}A_\tau }$; and

(b) $A_{\tau }\cap A_g= \{0\}$ for all $\tau \in \mathcal {T}_{n}(G)$ and all $g\in G$ such that $g\notin \tau $.

We say that $\alpha $ is *decomposable* if it has the *n*-decomposition property for some $n\in {\mathbb {N}}$. A partial action on a locally compact space *X* is said to have the *n-decomposition property* if the induced partial action on $C_0(X)$ has it.

Notation 4.3. Adopt the notation from Definition 4.2. For $\tau \in \mathcal {T}_n(G)$, we set $H_\tau =\{h\in G\colon h\tau =\tau \}$ and $m_\tau =({n}/({|H_\tau |})) -1$. Using Lemma 2.8 in [Reference Abadie, Gardella and Geffen2], we fix elements $x_0^\tau =1, x_1^\tau ,\ldots ,x_{m_\tau }^\tau \in G$ satisfying

Whenever $\tau $ is understood from the context, we will omit it from the notation for $H_\tau $, $m_\tau $ and $x_j^\tau $, for $j=1,\ldots ,m_\tau $. Let $\mathcal {O}_n(G)$ be the orbit space for the partial system described in Definition 4.1. We denote by $\kappa \colon \mathcal {T}_n(G)\to \mathcal {O}_n(G)$ the canonical quotient map and fix, for the rest of this work, a global section $\eta \colon \mathcal {O}_n(G)\to \mathcal {T}_n(G)$ for it. For $z\in \mathcal {O}_n(G)$, we write $\tau _z$ for $\eta (z)$, $H_z$ for $H_{\tau _z}$, and $m_z$ for $m_{\tau _z}$.

The following is part of Proposition 2.11 in [Reference Abadie, Gardella and Geffen2].

Proposition 4.4. Let *G* be a finite group, let *A* be a $C^*$-algebra, let $n=1,\ldots ,|G|$, let $\alpha $ be a partial action of *G* on *A* with the *n*-decomposition property, and let $\tau \in \mathcal {T}_n(G)$. Adopt the conventions from Notation 4.3. Then:

(1) the restriction of $\alpha |_{H_\tau }$ to $A_\tau $ is a global action;

(2) there is a natural

*G*-equivariant isomorphism$$ \begin{align*}\varphi\colon \bigoplus_{z\in\mathcal{O}_n(G)} A_{G\cdot \tau_z} \to A\end{align*} $$given by $\varphi (a)=\sum _{z\in \mathcal {O}_n(G)} a_z$ for all $a=(a_z)_{z\in \mathcal {O}_n(G)}$.

By part (2) above, many facts about decomposable partial actions can be reduced to the *G*-invariant direct summands $A_{G\cdot \tau }$. In particular, for many purposes it suffices to work with a single $\tau \in \mathcal {T}_n(G)$ and the induced partial action on $A_{G\cdot \tau }$.

Next, we recall Theorem 6.1 from [Reference Abadie, Gardella and Geffen2], which asserts that every partial action of a finite group is canonically an iterated extension of decomposable partial actions. It follows that many aspects of partial actions of finite groups can be reduced to the case of decomposable partial actions, as long as one has control over the resulting equivariant extension problem (which is in general quite complicated).

Theorem 4.5. Let *G* be a finite group, let *A* be a $C^*$-algebra, and let $\alpha $ be a partial action of *G* on *A*. Then there are canonical equivariant extensions

for $2\leq k \leq |G|$, satisfying the following properties:

(a) $A^{(|G|)}=A$ and $\alpha ^{|G|}=\alpha $;

(b) $\delta ^{(k)}$ has the

*k*-decomposition property;(c) $\alpha ^{(1)}$ has the 1-decomposition property.

We close this subsection by showing that the Rokhlin dimension of a decomposable partial action can be computed in terms of the global subsystems $H_\tau \curvearrowright A_{\tau }$.

Theorem 4.6. Let *G* be a finite group, let *A* be a $C^*$-algebra, let $n=1,\ldots ,|G|$, and let $\alpha $ be a partial action of a finite group *G* on *A* with the *n*-decomposition property. Fix $\tau \in \mathcal {T}_n(G)$. Then

Consequently,

Proof We begin by observing that the last two identities are consequences of the first two, by part (2) of Proposition 4.4.

We give a proof for the first equality; the proof for ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}$ is similar. We start by showing ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha |_{A_{G\cdot \tau }})\leq {\mathrm {dim}_{\mathrm {Rok}}}(\alpha |_{H_\tau })$. For this we set $d={\mathrm {dim}_{\mathrm {Rok}}}(\alpha |_{H_\tau })$ and assume that $d~<~\infty $. Adopt Notation 4.3, and fix $x_0=1,x_1,\ldots , x_m\in G$ with

Let $F\subseteq A_{G\cdot \tau }$ be a finite subset consisting of contractions, and let $\varepsilon>0$. Since $A_{G\cdot \tau }$ can be canonically identified with $\bigoplus _{\ell =0}^{m} A_{x_\ell ^{-1}\tau }$, we may assume that *F* can be written as a disjoint union $F=F_0\sqcup \cdots \sqcup F_m$, where $F_\ell \subseteq A_{x_\ell ^{-1}\tau }$ for every $\ell =0,\ldots ,m$. Set $K=\bigcup _{\ell =1}^m \alpha _{x_\ell }(F_\ell )\subseteq A_{\tau }$, and let $\xi _h^{(j)}\in A_\tau $, for $h\in H_\tau $ and $j=0,\ldots ,d$, be Rokhlin towers for $\alpha |_{H_\tau }$ with respect to $(K,\varepsilon )$. (Note that $\xi _h^{(j)}\neq 0$ for all $h\in H_\tau $ and all $j=0,\ldots ,d$.) For $g\in G$ and $j=0,\ldots ,d$, we set

Observe that $f_g^{(j)}$ is well defined (because $x_\ell ^{-1}H_\tau \cap x_{r}^{-1}H_\tau =\emptyset $ if $\ell \neq r$) and that it is a positive contraction in $A_{G\cdot \tau }\cap A_g$. We claim that the $f_g^{(j)}$ satisfy the conditions in Definition 2.1 and thus witness the fact that ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha |_{A_{G\cdot \tau }})\leq {\mathrm {dim}_{\mathrm {Rok}}}(\alpha |_{H_\tau })$.

In order to check (1), let $g,k\in G$, $j=0,\ldots ,d$, let $\ell =0,\ldots ,m$, and let $ x\in A_{g^{-1}}\cap F_\ell $. We need to show that

Since by the decomposition property (specifically, condition (b) in Definition 4.2), the element $x\in A_{g^{-1}}\cap F_\ell $ is zero (and hence the inequality holds trivially) whenever $g^{-1}\notin x_{\ell }^{-1}\tau $, it suffices to assume that there exist unique $h\in H_\tau $ and $r=0,\ldots ,m$ such that $g=x_r^{-1}hx_\ell $. By construction, we have $f_k^{(j)}=0$ unless $k\in \tau ^{-1}$, and similarly $f_{gk}^{(j)}=0$ unless $gk\in \tau ^{-1}$. We accordingly divide the proof into three cases.

*Case 1.* $k\notin \tau ^{-1}$, so that $f_k^{(j)}=0$. We claim that $f_{gk}^{(j)}\alpha _g(x)=0$. Arguing by contradiction, assume that the product $f_{gk}^{(j)}\alpha _g(x)$, which belongs to $A_{gk}\cap A_\tau $, is non-zero. By the intersection property, we must have $gk\in \tau $ and thus there are unique $s=0,\ldots ,m$ and $h_1\in H_\tau $ with $gk=x_s^{-1}h_1$. Since $f_{gk}^{(j)}\alpha _g(x)$, which belongs to $A_{x_r^{-1}\tau }\cap A_{x_{s}^{-1}\tau }$, is nonzero, the decomposition property implies that $r=s$. Thus

contradicting our assumption. This verifies (4.1) in this case.

*Case 2.* $gk\notin \tau ^{-1}$, so that $f_{gk}^{(j)}=0$. We claim that $\alpha _g(f_k^{(j)}x)=0$. Arguing by contradiction, assume that the product $f_k^{(j)}x$, which belongs to $A_{k}\cap A_{x_\ell ^{-1}\tau }$, is non-zero. By the intersection property, we must have $k\in x_\ell ^{-1}\tau $, and thus there is $h_2\in H_\tau $ with $k=x_\ell ^{-1}h_2$. Thus

contradicting our assumption. This verifies (4.1) in this case.

*Case 3.* $gk,k \in \tau ^{-1}$. Then there exists $\widetilde {h}\in H_\tau $ with $k=x_\ell ^{-1}\widetilde {h}$, so that $gk=x_{r}^{-1}h\widetilde {h}$. Thus,

verifying (4.1) also in this case.

We turn to condition (2) in Definition 2.1 Let $g,k\in G$ with $g\neq k$, let $j=0,\ldots ,d$, let $\ell =0,\ldots ,m$, and let $a\in F_\ell $. We need to show that $f_{g}^{(j)}f_k^{(j)}a$ has norm at most $\varepsilon $. We may assume that there exist $r,s=0,\ldots ,m$ and $h_1,h_2\in H_\tau $ with $g=x_r^{-1}h_1$ and $k=x_s^{-1}h_2$ (or else either $f_g^{(j)}=0$ or $f_k^{(j)}=0$). Additionally, since the product $f_{g}^{(j)}f_k^{(j)}a$ belongs to $A_{g}\cap A_k\cap A_{x_\ell ^{-1}\tau }$, we may assume that $r=s=\ell $ (or else $f_{g}^{(j)}f_k^{(j)}a=0$). In this case, we have

as desired. In order to check condition (3), let $\ell =0,\ldots ,m$ and $a\in F_\ell $. Using at the second step that a product of the form $\alpha _{x_r^{-1}}(\xi _h^{(j)})a$ is zero unless $r=\ell $, we have

as desired. Finally, to check condition (4), let $g\in G$, $j=0,\ldots ,d$, $\ell =0,\ldots ,m$, and $a\in F_\ell $ be given. Since $f_g^{(j)}=0$ unless $g\in \tau ^{-1}$, we may assume that there are $h\in H_\tau $ and $s=0,\ldots ,m$ such that $g=x_s^{-1}h$. Since the products $f_g^{(j)}a$ and $af_g^{(j)}$ are both zero unless $g\in x_{\ell }^{-1}\tau $, we may assume that $s=\ell $. For $b\in F$, we have

This completes the proof that ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha |_{A_{G\cdot \tau }})\leq {\mathrm {dim}_{\mathrm {Rok}}}(\alpha |_{H_\tau })$.

Next, we show ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha |_{H_\tau })\leq {\mathrm {dim}_{\mathrm {Rok}}}(\alpha |_{A_{G\cdot \tau }})$. Set $d={\mathrm {dim}_{\mathrm {Rok}}}(\alpha |_{A_{G\cdot \tau }})$ and assume that $d<\infty $. Fix an approximate unit $(e_{\lambda })_{\lambda \in \Lambda }$ of $A_\tau $ and let $\pi \colon A_{G\cdot \tau }\to A_{\tau }$ be the quotient map given by $\pi (x)=\lim _{\lambda }xe_\lambda $ for all $x\in A_{G\cdot \tau }$. (The map $\pi $ does not depend on the approximate identity, but this is not relevant to us.) Note that

for all $x\in A_{G\cdot \tau }$ and all $a\in A_\tau $. Let $F\subseteq A_\tau $ be a finite subset and let $\varepsilon>0$. We may assume without loss of generality that *F* is $H_\tau $-invariant and consists of contractions. For every right coset $q\in H_\tau \setminus G$, let $g_q\in G$ satisfy $H_\tau g_q=q$. Set $\varepsilon _0={\varepsilon }/{[G:H_\tau ]^2}$ and let $\xi _g^{(j)}\in A_{G\cdot \tau }\cap A_g$, for $g\in G$ and $j=0,\ldots , d$, be Rokhlin towers for $\alpha |_{A_{G\cdot \tau }}$ with respect to $(F,\varepsilon _0)$.

For $h\in H_\tau $ and $j=0,\ldots , d$, we set

We claim that these positive contractions witness that ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha |_{H_\tau })\leq d$ for $(F,\varepsilon )$.

Let $h_1,h_2\in H_\tau $, let $j=0,\ldots , d$ and let $a\in F$ be given. Then

thus establishing condition (1) in Definition 2.1. In order to prove (2), let $h_1,h_2\in H_\tau $ with $h_1\neq h_2$, let $j=0,\ldots ,d$, and let $a\in F$. Then

using at the second step that $h_1g_q\neq h_2q_p$ for all $p,q\in H_\tau \setminus G$. To check (3), let $a\in F$. Then

Finally, to check (4), let $h\in H_\tau $, $j=0,\ldots , d$, and $a,b\in F$ be given. Then

as required. This shows that ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha |_{H_\tau })\leq d$, and completes the proof.

### 4.2 Crossed products and fixed point algebras

Our next result shows that a number of properties are preserved by formation of crossed products and fixed point algebras by partial actions with finite Rokhlin dimension. The kind of properties preserved in this setting are more restrictive than in the global setting, particularly since the properties in question must pass to extensions. For *unital* partial actions, we will show in Theorem 4.10 that even more properties are preserved.

Recall that if $\alpha $ is a partial action of a finite group *G* on a $C^*$-algebra *A*, then its *crossed product* $A\rtimes _\alpha G$ is the set of all formal linear combinations of elements of the form $a_gu_g$, where $g\in G$ and $a_g\in A_g$, subject to the relations

We consider $A\rtimes _\alpha G$ with its greatest $C^*$-norm, which is not hard to see exists.

Moreover, its *fixed point algebra* $A^\alpha $ is defined as

Theorem 4.7. Let *G* be a finite group, and let $d\in {\mathbb {N}}$. Let **P** be a property for $C^*$-algebras which is preserved by:

(E) passage to ideals, quotients and extensions;

(M) Morita equivalence;

(C) crossed products by

*global*actions of*G*with ${\mathrm {dim}_{\mathrm {Rok}}}\leq d$.

Let *A* be a unital $C^*$-algebra, and let $\alpha $ be a partial action of *G* on *A*. If ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )\leq d$ and *A* satisfies **P**, then so do $A\rtimes _\alpha G$ and $A^\alpha $. In particular, the following hold.

(1) If ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )<\infty $ and ${\mathrm {dim}_{\mathrm {nuc}}}(A)<\infty $, then ${\mathrm {dim}_{\mathrm {nuc}}}(A^\alpha ),{\mathrm {dim}_{\mathrm {nuc}}}(A\rtimes _\alpha G)<\infty $. Indeed,

$$ \begin{align*}{\mathrm{dim}_{\mathrm{nuc}}}(A\rtimes_\alpha G)\leq (|G|-1)({\mathrm{dim}_{\mathrm{Rok}}}(\alpha)+1)({\mathrm{dim}_{\mathrm{nuc}}}(A)+1)+{\mathrm{dim}_{\mathrm{nuc}}}(A).\end{align*} $$(2) If ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )<\infty $ and ${\mathrm {dr}}(A)<\infty $, then ${\mathrm {dr}}(A^\alpha ), {\mathrm {dr}}(A\rtimes _\alpha G)<\infty $. Indeed,

$$ \begin{align*}{\mathrm{dr}}(A\rtimes_\alpha G)\leq (|G|-1)({\mathrm{dim}_{\mathrm{Rok}}}(\alpha)+1)({\mathrm{dr}}(A)+1)+{\mathrm{dr}}(A).\end{align*} $$

A similar statement is true for ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}$. In particular, the following hold.

(3) If ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}(\alpha )<\infty $ and $\mathrm {sr}(A)<\infty $, then $\mathrm {sr}(A^\alpha ),\mathrm {sr}(A\rtimes _\alpha G)<\infty $. Indeed,

$$ \begin{align*}\mathrm{sr}(A\rtimes_\alpha G)\leq \frac{|G|({\mathrm{sr}}(A)+{\mathrm{dim}_{\mathrm{Rok}}^{\mathrm{c}}}(\alpha)+3)-2}{2}. \end{align*} $$(4) If ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}(\alpha )<\infty $ and $\mathrm {RR}(A)<\infty $, then $\mathrm {RR}(A^\alpha ),\mathrm {RR}(A\rtimes _\alpha G)<\infty $.

(5) Let $\mathcal {D}$ be a strongly self-absorbing $C^*$-algebra. If ${\mathrm {dim}_{\mathrm {Rok}}^{\mathrm {c}}}(\alpha )<\infty $ and

*A*is $\mathcal {D}$-absorbing, then $A^\alpha $ and $A\rtimes _\alpha G$ are $\mathcal {D}$-absorbing as well.

Proof Let **P** be a property as in the statement, let *A* be a $C^*$-algebra satisfying **P**, and let $\alpha $ be a partial action of *G* on *A* with ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha )\leq d$. By Theorem 4.5, there there are canonical equivariant extensions

for $2\leq k \leq |G|$, satisfying the following properties:

(D.1) $A^{(|G|)}=A$ and $\alpha ^{|G|}=\alpha $;

(D.2) $\delta ^{(k)}$ has the

*k*-decomposition property;(D.3) $\alpha ^{(1)}$ has the 1-decomposition property.

In particular, each $A^{(k)}$ is a quotient of *A*, and each $D^{(k)}$ is an ideal of a quotient of *A*. By (E), all of these $C^*$-algebras satisfy **P**. By repeatedly applying Proposition 2.6, we deduce that

for all $k=2,\ldots ,|G|$, while ${\mathrm {dim}_{\mathrm {Rok}}}(\alpha ^{(1)})=0$ by (D.3) and Example 2.2. For $k=2,\ldots ,|G|$, apply crossed products to (4.3) to get the extension

Claim. $A^{(k)}\rtimes _{\alpha ^{(k)}} G$ satisfies **P** for all $k=1,\ldots ,|G|$. We prove this by induction on *k*. Since $A^{(1)}\rtimes _{\alpha ^{(1)}} G=A^{(1)}$ by Example 2.2 and $A^{(1)}$ is a quotient of *A*, this follows from (E). Assume we have proved it for $k-1$, and let us prove it for *k*. Since **P** passes to extensions by (E), the exact sequence in (4.5) implies that it suffices to show that $D^{(k)}\rtimes _{\delta ^{(k)}} G$ satisfies **P**. Combining (D.2) and Theorem C in [Reference Abadie, Gardella and Geffen2], it follows that $D^{(k)}\rtimes _{\delta ^{(k)}} G$ is isomorphic to a finite direct sum of algebras of the form $M_{m_\tau }(D_\tau ^{(k)}\rtimes _{\delta _\tau ^{(k)}} H_\tau )$, for $m_\tau =k/|H_\tau |\leq |G|$ and $\tau \in \mathcal {T}_k(G)$, where $D^{(k)}_\tau $ is an ideal in