Skip to main content
×
×
Home

Persistence of wandering intervals in self-similar affine interval exchange transformations

  • XAVIER BRESSAUD (a1), PASCAL HUBERT (a2) and ALEJANDRO MAASS (a3)
Abstract

In this article we prove that given a self-similar interval exchange transformation T(λ,π), whose associated matrix verifies a quite general algebraic condition, there exists an affine interval exchange transformation with wandering intervals that is semi-conjugated to it. That is, in this context the existence of Denjoy counterexamples occurs very often, generalizing the result of Cobo [Piece-wise affine maps conjugate to interval exchanges. Ergod. Th. & Dynam. Sys.22 (2002), 375–407].

Copyright
References
Hide All
[1]Adamczewski, B.. Symbolic discrepancy and self-similar dynamics. Ann. Inst. Fourier (Grenoble) 54 (2004), 22012234.
[2]Avila, A. and Viana, M.. Simplicity of Lyapunov spectra: proof of the Zorich–Kontsevich conjecture. Acta Math. 198 (2007), 156.
[3]Canterini, V. and Siegel, A.. Automate des préfixes-suffixes associé une substitution primitive [Prefix–suffix automaton associated with a primitive substitution]. J. Théor. Nombres Bordeaux 13(2) (2001), 353369.
[4]Camelier, R. and Gutierrez, C.. Affine interval exchange transformations with wandering intervals. Ergod. Th. & Dynam. Sys. 17 (1997), 13151338.
[5]Cobo, M.. Piece-wise affine maps conjugate to interval exchanges. Ergod. Th. & Dynam. Sys. 22 (2002), 375407.
[6]Denjoy, A.. Sur les courbes definies par les équations differentielles à la surface du tore. J. Math. Pures Appl. 11(9) (1932), 333375.
[7]Dumont, J. M. and Thomas, A.. Digital sum moments and substitutions. Acta Arith. 64 (1993), 205225.
[8]Dumont, J. M. and Thomas, A.. Digital sum problems and substitutions on a finite alphabet. J. Number Theory 39(3) (1991), 351366.
[9]Fogg, P.. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in Mathematics, 1794). Springer, Berlin, 2002.
[10]Gjerde, R. and Johansen, O.. Bratteli–Vershik models for Cantor minimal systems associated to interval exchange transformations. Math. Scand. 90 (2002), 87100.
[11]Halász, G.. Remarks on the remainder in Birkhoff’s ergodic theorem. Acta Math. Acad. Sci. Hungar. 28 (1976), 389395.
[12]Herman, R. H., Putnam, I. and Skau, C. F.. Ordered Bratteli diagrams, dimension groups and topological dynamics. Internat. J. Math. 3 (1992), 827864.
[13]Hubert, P. and Lanneau, E.. Veech groups without parabolic elements. Duke Math. J. 133(2) (2006), 335346.
[14]Kenyon, R. and Smillie, J.. Billiards on rational-angled triangles. Comment. Math. Helv. 75 (2000), 65108.
[15]Levitt, G.. La décomposition dynamique et la différentiabilité des feuilletages des surfaces. Ann. Inst. Fourier (Grenoble) 37 (1987), 85116.
[16]Marmi, S., Moussa, P. and Yoccoz, J. C.. The cohomological equation for Roth-type interval exchange maps. J. Amer. Math. Soc. 18(4) (2005), 823872.
[17]Marmi, S., Moussa, P. and Yoccoz, J. C.. Affine interval maps with a wandering interval. Preprint, 2008, arXiv:0805.4737v2.
[18]Queffélec, M.. Substitution Dynamical Systems—Spectral Analysis (Lecture Notes in Mathematics, 1294). Springer, Berlin, 1987.
[19]Rauzy, G.. Echanges d’intervalles et transformations induites. Acta Arith. 34 (1979), 315328.
[20]Thurston, W.. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. 19 (1988), 417431.
[21]Veech, W. A.. Gauss measures for transformations on the space of interval exchange maps. Ann. of Math. (2) 115 (1982), 201242.
[22]Yoccoz, J. C.. Continuous fraction algorithms for interval exchange maps: an introduction. Frontiers in Number Theory, Physics and Geometry, Vol. I. On Random matrices, Zeta Functions and Dynamical Systems. Eds. Cartier, P., Julia, B., Moussa, P. and Vanhove, P.. Springer, Berlin, 2006, pp. 403437.
[23]Zorich, A.. Finite Gauss measure on the space of interval exchange transformations, Lyapunov exponents. Ann. Inst. Fourier (Grenoble) 46(2) (1996), 325370.
[24]Zorich, A.. Flat surfaces. Frontiers in Number Theory, Physics and Geometry, Vol. I. On Random Matrices, Zeta Functions and Dynamical Systems. Eds. Cartier, P., Julia, B., Moussa, P. and Vanhove, P.. Springer, Berlin, 2006, pp. 439585.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed