Skip to main content Accessibility help

The Poisson boundary of a locally discrete group of diffeomorphisms of the circle



We compute the Poisson boundary of locally discrete groups of diffeomorphisms of the circle.



Hide All
[1]Antonov, V.. Model of processes of cyclic evolution type. Synchronisation by a random signal. Vestn. Leningr. Univ. Ser. Mat. Mekh. Astron. 2(7) (1984), 6776.
[2]Avez, A.. Entropie des groupes de type fini. C. R. Acad. Sci. Paris Sér. A–B 275 (1972), 13631366.
[3]Baxendale, P.. Lyapunov exponents and relative entropy for a stochastic flow of diffeomorphisms. Probab. Theory Related Fields 81 (1989), 521554.
[4]Chaperon, M.. Invariant manifolds revisited. Proc. Steklov Inst. Math. 236(1) (2002), 415433.
[5]Deroin, B. and Kleptsyn, V.. Random conformal dynamical systems. Geom. Funct. Anal. 17(4) (2007), 10431105.
[6]Deroin, B., Kleptsyn, V. and Navas, A.. Sur la dynamique unidimensionnelle en régularité intermédiaire. Acta Math. 199 (2007), 199262.
[7]Derriennic, Y.. Entropie, Théorèmes Limite, et Marches Aléatoire (Lecture Notes in Mathematics, 1210). Springer, Berlin, 1986.
[8]Ghys, É.. Sur les groupes engendrés par des difféomorphismes proches de l’identité. Bull. Braz. Math. Soc. (N.S.) 24(2) (1993), 137178.
[9]Ghys, É.. Groups acting on the circle. Enseign. Mat. 47 (2001), 329407.
[10]Ghys, É. and Sergiescu, V.. Sur un groupe remarquable de difféomorphismes du cercle. Comment. Math. Helv. 62(2) (1987), 185239.
[11]Furstenberg, H.. Boundary Theory and Stochastic Processes on Homogeneous Spaces (Proceedings of Symposia in Pure Mathematics, 26). American Mathematical Society, Providence, RI, 1973, pp. 193229.
[12]Kaimanovich, V.. The Poisson formula for groups with hyperbolic properties. Ann. of Math. (2) 152 (2000), 659692.
[13]Kaimanovich, V. and Vershik, A.. Random walks on discrete groups: boundary and entropy. Ann. Probab. 11(3) (1983), 457490.
[14]Kleptsyn, V. and Nal’ski, M.. Convergence of orbits in random dynamical systems on the circle. Funct. Anal. Appl. 38(4) (2004), 267282.
[15]Nakai, I.. Separatrices for non solvable dynamics on (C,0). Ann. Inst. Fourier 4(2) (1994), 569599.
[16]Ledrappier, F.. Quelques propriétés des exposants caractéristiques. École d’été de St Flour XII – 1982 (Lecture Notes in Mathematics, 1097). Springer, Berlin, 1984, pp. 305396.
[17]Ledrappier, F.. Une relation entre entropie, dimension et exposant pour certaines marches aléatoires. C. R. Acad. Sci. Sér. I Math. 296(8) (1983), 369372.
[18]Loray, F. and Rebelo, J.. Minimal rigid foliations by curves of CP n. J. Eur. Math. Soc. 5 (2003), 147201.
[19]Malliavin, P.. The canonic diffusion above the diffeomorphism group of the circle. C. R. Acad. Sci. Sér. I Math. 329 (1999), 325329.
[20]Navas, A.. Groups of Circle Diffeomorphisms (Chicago Lectures in Mathematics). Chicago University Press, Chicago, 2010.
[21]Rebelo, J.. A theorem of measurable rigidity in Diffω(S 1). Ergod. Th. & Dynam. Sys. 21(5) (2001), 15251561.
[22]Sternberg, S.. Local contractions and a theorem of Poincaré. Amer. J. Math. 79 (1957), 809824.
[23]Yoccoz, J. C.. Centralisateurs et conjugaison différentiable des difféomorphismes du cercle. Petits diviseurs en dimension 1. Astérisque 231 (1995), 89242.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed