Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T23:53:20.961Z Has data issue: false hasContentIssue false

Polynomial mean complexity and logarithmic Sarnak conjecture

Published online by Cambridge University Press:  27 April 2023

WEN HUANG
Affiliation:
CAS Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China (e-mail: wenh@mail.ustc.edu.cn, yexd@ustc.edu.cn)
LEIYE XU*
Affiliation:
CAS Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China (e-mail: wenh@mail.ustc.edu.cn, yexd@ustc.edu.cn)
XIANGDONG YE
Affiliation:
CAS Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China (e-mail: wenh@mail.ustc.edu.cn, yexd@ustc.edu.cn)

Abstract

In this paper, we reduce the logarithmic Sarnak conjecture to the $\{0,1\}$-symbolic systems with polynomial mean complexity. By showing that the logarithmic Sarnak conjecture holds for any topologically dynamical system with sublinear complexity, we provide a variant of the $1$-Fourier uniformity conjecture, where the frequencies are restricted to any subset of $[0,1]$ with packing dimension less than one.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Corwin, L. J. and Greenleaf, F. P.. Representations of Nilpotent Lie Groups and their Applications. Part I. Basic Theory and Examples (Cambridge Studies in Advanced Mathematics, 18). Cambridge University Press, Cambridge, 1990.Google Scholar
Davenport, H.. On some infinite series involving arithmetical functions II. Q. J. Math. 8(1937), 313320.Google Scholar
Dong, P., Donoso, S., Maass, A., Shao, S. and Ye, X.. Infinite-step nilsystems, independence and complexity. Ergod. Th. & Dynam. Sys. 33(1) (2013), 118143.Google Scholar
El Abdalaoui, E. H., Kułaga-Przymus, J., Lemańczyk, M. and de la Rue, T.. Möbius disjointness for models of an ergodic system and beyond. Israel J. Math. 228 (2018), 707751.Google Scholar
Fan, A., Lau, K. and Rao, H.. Relationships between different dimensions of a measure. Monatsh. Math. 135 (2002), 191201.Google Scholar
Ferenczi, S., Kułaga-Przymus, J. and Lemańczyk, M.. Sarnak’s conjecture: what’s new. Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, CIRM Jean-Morlet Chair, Fall 2016 (Lecture Notes in Mathematics, 2213). With a forward by P. Sarnak. Eds. S. Ferenczi, J. Kułaga-Przymus and M. Lemańczyk. Springer, Cham, 2018, pp. 163235.Google Scholar
Frantzikinakis, N. and Host, B.. The logarithmic Sarnak conjecture for ergodic weights. Ann. of Math. (2) 187(3) (2018), 869931.Google Scholar
Green, B. and Tao, T.. The quantitative behaviour of polynomial orbits on nilmanifolds. Ann. of Math. (2) 175(2) (2012), 465540.Google Scholar
Green, B., Tao, T. and Ziegler, T.. An inverse theorem for the Gowers ${U}^{s+1}\left[N\right]$ -norm. Ann. of Math. (2) 176(2) (2012), 12311372.Google Scholar
Host, B. and Kra, B.. Nilpotent Structures in Ergodic Theory (Mathematical Surveys and Monographs, 236). American Mathematical Society, Providence, RI, 2018.Google Scholar
Huang, W., Wang, Z. and Ye, X., Measure complexity and Möbius disjointness. Adv. Math. 347(2019), 827858.Google Scholar
Kanigowski, A., Lemańczyk, M. and Radziwiłł, M.. Rigidity in dynamics and Möbius disjointness. Fund. Math. 255(3) (2021), 309336.Google Scholar
Kułaga-Przymus, J. and Lemańczyk, M.. Sarnak’s conjecture from the ergodic theory point of view. Encyclopedia of Complexity and Systems Science, to appear. Preprint, arXiv:2009.04757, 2020.Google Scholar
Lindenstrauss, E.. Mean dimension, small entropy factors and an embedding theorem. Publ. Math. Inst. Hautes Études Sci. 89 (1999), 227262.Google Scholar
Lindenstrauss, E. and Weiss, B.. Mean topological dimension. Israel J. Math. 115 (2000), 124.Google Scholar
Malcev, A. I.. On a class of homogeneous spaces. Amer. Math. Soc. Transl. 1951(39) (1951), 33 pp.Google Scholar
Mattila, P.. Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability (Cambridge Studies in Advanced Mathematics, 44). Cambridge University Press, Cambridge, 1995.Google Scholar
McNamara, R.. Sarnak’s conjecture for sequences of almost quadratic word growth. Ergod. Th. & Dynam. Sys. 41(10) (2021), 30603115.Google Scholar
Sarnak, P.. Möbius randomness and dynamics. Not. S. Afr. Math. Soc. 43(2) (2012), 8997.Google Scholar
Shub, M. and Weiss, B.. Can one always lower topological entropy? Ergod. Th. & Dynam. Sys. 11(3) (1991), 535546.Google Scholar
Tao, T.. The logarithmically averaged Chowla and Elliott conjectures for two-point correlations. Forum Math. Pi 4 (2016), e8, 36 pp.Google Scholar
Tao, T.. Equivalence of the logarithmically averaged Chowla and Sarnak conjectures. Number Theory-Diophantine Problems, Uniform Distribution and Applications. Springer, Cham, 2017, pp. 391421.Google Scholar
Tao, T. and Teräväinen, J.. Odd order cases of the logarithmically averaged Chowla conjecture. J. Théor. Nombres Bordeaux 30(3) (2018), 9971015.Google Scholar
Tao, T. and Teräväinen, J.. The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures. Duke Math. J. 168(11) (2019), 19772027.CrossRefGoogle Scholar