Skip to main content Accessibility help
×
Home

Poly-time computability of the Feigenbaum Julia set

  • ARTEM DUDKO (a1) and MICHAEL YAMPOLSKY (a2)

Abstract

We present the first example of a poly-time computable Julia set with a recurrent critical point: we prove that the Julia set of the Feigenbaum map is computable in polynomial time.

Copyright

References

Hide All
[1] Binder, I., Braverman, M. and Yampolsky, M.. On computational complexity of Siegel Julia sets. Commun. Math. Phys. 264(2) (2006), 317334.
[2] Binder, I., Braverman, M. and Yampolsky, M.. Filled Julia sets with empty interior are computable. Found. Comput. Math. 7 (2007), 405416.
[3] Braverman, M.. Computational complexity of Euclidean sets: hyperbolic Julia sets are poly-time computable. Master’s Thesis, University of Toronto, 2004.
[4] Braverman, M.. Parabolic Julia sets are polynomial time computable. Nonlinearity 19(6) (2006), 13831401.
[5] Braverman, M. and Yampolsky, M.. Non-computable Julia sets. J. Amer. Math. Soc. 19(3) (2006), 551578.
[6] Braverman, M. and Yampolsky, M.. Computability of Julia Sets (Algorithms and Computation in Mathematics, 23) . Springer, Berlin, 2008.
[7] Buff, X.. Geometry of the Feigenbaum map. Conform. Geom. Dyn. 3 (1999), 79101.
[8] de Melo, W. and van Strien, S.. One-dimensional Dynamics. Springer, Berlin, 1993.
[9] Douady, A. and Hubbard, J.. On the dynamics of polynomial-like maps. Ann. Sci. Éc. Norm. Supér. (4) 18 (1985), 287344.
[10] Dudko, A.. Computability of the Julia set. Non-recurrent critical orbits. Discrete Contin. Dyn. Syst. Ser. A 34 (2014), 27512778.
[11] Epstein, H.. Fixed points of composition operators II. Nonlinearity 2 (1989), 305310.
[12] Epstein, H.. Fixed points of the period-doubling operator. Lecture Notes, Lausanne.
[13] Lanford, O. III. A computer-assisted proof of the Feigenbaum conjectures. Bull. Amer. Math. Soc. (N.S.) 6(3) (1982), 427434.
[14] Lyubich, M.. Dynamics of quadratic polynomials, I–II. Acta Math. 178 (1997), 185297.
[15] Lyubich, M.. Feigenbaum–Coullet–Tresser universality and Milnor’s hairiness conjecture. Ann. of Math. (2) 149 (1999), 319420.
[16] McMullen, C.. Renormalization and 3-manifolds which Fiber Over the Circle (Annals of Math Studies, 142) . Princeton University Press, Princeton, NJ, 1996.
[17] Papadimitriou, C. M.. Computational Complexity. Addison-Wesley, Reading, MA, 1994.
[18] Rettinger, R.. A fast algorithm for Julia sets of hyperbolic rational functions. Electron. Notes Theor. Comput. Sci. 120 (2005), 145157.
[19] Sipser, M.. Introduction to the Theory of Computation, 2nd edn. BWS Publishing, Boston, 2005.
[20] Turing, A. M.. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. (3) 42 (1937), 230265.

Related content

Powered by UNSILO

Poly-time computability of the Feigenbaum Julia set

  • ARTEM DUDKO (a1) and MICHAEL YAMPOLSKY (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.