Skip to main content
×
Home

Quasiregular dynamics on the n-sphere

  • ALASTAIR N. FLETCHER (a1) and DANIEL A. NICKS (a2)
Abstract
Abstract

In this paper, we investigate the boundary of the escaping set I(f) for quasiregular mappings on ℝn, both in the uniformly quasiregular case and in the polynomial type case. The aim is to show that ∂I(f) is the Julia set J(f) when the latter is defined, and shares properties with the Julia set when J(f) is not defined.

Copyright
References
Hide All
[1]Beardon A. F.. Iteration of Rational Functions (Graduate Texts in Mathematics, 132). Springer, New York, 1991.
[2]Bergweiler W.. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151188.
[3]Bergweiler W.. Fixed points of composite entire and quasiregular maps. Ann. Acad. Sci. Fenn. 31 (2006), 523540.
[4]Bergweiler W.. Karpińska’s paradox in dimension three. Preprint, arXiv, http://arxiv.org/abs/0902.2686.
[5]Bergweiler W., Fletcher A., Langley J. and Meyer J.. The escaping set of a quasiregular mapping. Proc. Amer. Math. Soc. 137(2) (2009), 641651.
[6]Dominguez P.. Dynamics of transcendental meromorphic functions. Ann. Acad. Sci. Fenn. 23 (1998), 225250.
[7]Eremenko A.. On the iteration of entire functions. Dynamical Systems and Ergodic Theory (Warsaw 1986) (Banach Center Publications, 23). PWN, Warsaw, 1989, pp. 339345.
[8]Heinonen J. and Koskela P.. Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type. Math. Scand. 77(2) (1995), 251271.
[9]Hinkkanen A.. Uniformly quasiregular semigroups in two dimensions. Ann. Acad. Sci. Fenn. 21(1) (1996), 205222.
[10]Hinkkanen A., Martin G. and Mayer V.. Local dynamics of uniformly quasiregular mappings. Math. Scand. 95(1) (2004), 80100.
[11]Iwaniec T. and Martin G.. Quasiregular semigroups. Ann. Acad. Sci. Fenn. 21(2) (1996), 241254.
[12]Martio O.. A capacity inequality for quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I 474 (1970), 118.
[13]Mayer V.. Uniformly quasiregular mappings of Lattès type. Conform. Geom. Dyn. 1 (1997), 104111.
[14]Mayer V.. Behavior of quasiregular semigroups near attracting fixed points. Ann. Acad. Sci. Fenn. 25(1) (2000), 3139.
[15]Milnor J.. Dynamics in One Complex Variable, 3rd edn.(Annals of Mathematics Studies, 160). Princeton University Press, Princeton, NJ, 2006.
[16]Miniowitz R.. Normal families of quasimeromorphic mappings. Proc. Amer. Math. Soc. 84(1) (1982), 3543.
[17]Reshetnyak Yu. G.. Space mappings with bounded distortion. Sibirsk. Mat. Zh. 8 (1967), 629659.
[18]Rickman S.. Quasiregular Mappings (Ergebnisse der Mathematik und ihrer Grenzgebiete, 26). Springer, Berlin, 1993.
[19]Siebert H.. Fixpunkte und normale Familien quasiregulärer Abbildungen, Dissertation, CAU Kiel, 2004. (http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00001260).
[20]Siebert H.. Fixed points and normal families of quasiregular mappings. J. Anal. Math. 98 (2006), 145168.
[21]Sun D. and Yang L.. Iteration of quasi-rational mapping. Progr. Natur. Sci. (English Ed.) 11(1) (2001), 1625.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 80 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.