No CrossRef data available.
Published online by Cambridge University Press: 01 October 1999
For a sequence $(c_n)$ of complex numbers we consider the quadratic polynomials $f_{c_n}(z):=z^2+c_n$ and the sequence $(F_n)$ of iterates $F_n:= f_{c_n} \circ \dotsb \circ f_{c_1}$. The Fatou set $\mathcal{F}_{(c_n)}$ is by definition the set of all $z \in \widehat{\mathbb{C}}$ such that $(F_n)$ is normal in some neighbourhood of $z$, while the complement of $\mathcal{F}_{(c_n)}$ is called the Julia set $\mathcal{J}_{(c_n)}$. The aim of this paper is to study the connectedness of the Julia set $\mathcal{J}_{(c_n)}$ provided that the sequence $(c_n)$ is bounded and randomly chosen. For example, we prove a necessary and sufficient condition for the connectedness of $\mathcal{J}_{(c_n)}$ which implies that $\mathcal{J}_{(c_n)}$ is connected if $|c_n| \le \frac{1}{4}$, while it is almost surely disconnected if $|c_n| \le \delta$ for some $\delta>\frac{1}{4}$.