Skip to main content Accessibility help
×
Home

Recognizability for sequences of morphisms

  • VALÉRIE BERTHÉ (a1), WOLFGANG STEINER (a1), JÖRG M. THUSWALDNER (a2) and REEM YASSAWI (a3)

Abstract

We investigate different notions of recognizability for a free monoid morphism $\unicode[STIX]{x1D70E}:{\mathcal{A}}^{\ast }\rightarrow {\mathcal{B}}^{\ast }$ . Full recognizability occurs when each (aperiodic) point in ${\mathcal{B}}^{\mathbb{Z}}$ admits at most one tiling with words $\unicode[STIX]{x1D70E}(a)$ , $a\in {\mathcal{A}}$ . This is stronger than the classical notion of recognizability of a substitution $\unicode[STIX]{x1D70E}:{\mathcal{A}}^{\ast }\rightarrow {\mathcal{A}}^{\ast }$ , where the tiling must be compatible with the language of the substitution. We show that if $|{\mathcal{A}}|=2$ , or if $\unicode[STIX]{x1D70E}$ ’s incidence matrix has rank $|{\mathcal{A}}|$ , or if $\unicode[STIX]{x1D70E}$ is permutative, then $\unicode[STIX]{x1D70E}$ is fully recognizable. Next we investigate the classical notion of recognizability and improve earlier results of Mossé [Puissances de mots et reconnaissabilité des points fixes d’une substitution. Theoret. Comput. Sci. 99(2) (1992), 327–334] and Bezuglyi et al [Aperiodic substitution systems and their Bratteli diagrams. Ergod. Th. & Dynam. Sys. 29(1) (2009), 37–72], by showing that any substitution is recognizable for aperiodic points in its substitutive shift. Finally we define recognizability and also eventual recognizability for sequences of morphisms which define an $S$ -adic shift. We prove that a sequence of morphisms on alphabets of bounded size, such that compositions of consecutive morphisms are growing on all letters, is eventually recognizable for aperiodic points. We provide examples of eventually recognizable, but not recognizable, sequences of morphisms, and sequences of morphisms which are not eventually recognizable. As an application, for a recognizable sequence of morphisms, we obtain an almost everywhere bijective correspondence between the $S$ -adic shift it generates, and the measurable Bratteli–Vershik dynamical system that it defines.

Copyright

References

Hide All
[AC13] Almeida, J. and Costa, A.. Presentations of Schützenberger groups of minimal subshifts. Israel J. Math. 196(1) (2013), 131.
[AF01] Arnoux, P. and Fisher, A. M.. The scenery flow for geometric structures on the torus: the linear setting. Chin. Ann. Math. Ser. B 22(4) (2001), 427470.
[AFP17] Adams, T., Ferenczi, S. and Petersen, K.. Constructive symbolic presentations of rank one measure-preserving systems. Colloq. Math. 150(2) (2017), 243255.
[AP98] Anderson, J. E. and Putnam, I. F.. Topological invariants for substitution tilings and their associated C -algebras. Ergod. Th. & Dynam. Sys. 18(3) (1998), 509537.
[AR91] Arnoux, P. and Rauzy, G.. Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. France 119(2) (1991), 199215.
[AR16] Andress, T. I. and Robinson, E. A. Jr. The Cech cohomology and the spectrum for 1-dimensional tiling systems. Ergodic Theory, Dynamical Systems, and the Continuing Influence of John C. Oxtoby (Contemporary Mathematics, 678) . American Mathematical Society, Providence, RI, 2016, pp. 5371.
[AS14] Aubrun, N. and Sablik, M.. Multidimensional effective S-adic subshifts are sofic. Unif. Distrib. Theory 9(2) (2014), 729.
[BD14] Berthé, V. and Delecroix, V.. Beyond substitutive dynamical systems: S-adic expansions. RIMS Lecture note ‘Kôkyûroku Bessatsu’ B46 (2014), 81123.
[BDFD+15] Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C. and Rindone, G.. Maximal bifix decoding. Discrete Math. 338(5) (2015), 725742.
[Ber11] Berthé, V.. Multidimensional Euclidean algorithms, numeration and substitutions. Integers 11B (2011), A2.
[BFZ05] Berthé, V., Ferenczi, S. and Zamboni, L. Q.. Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly. Algebraic and Topological Dynamics (Contemporary Mathematics, 385) . American Mathematical Society, Providence, RI, 2005, pp. 333364.
[BHL15] Bédaride, N., Hubert, P. and Leplaideur, R.. Thermodynamic formalism and substitutions. Preprint, 2015, arXiv:1511.03322v1.
[BKM09] Bezuglyi, S., Kwiatkowski, J. and Medynets, K.. Aperiodic substitution systems and their Bratteli diagrams. Ergod. Th. & Dynam. Sys. 29(1) (2009), 3772.
[BKMS10] Bezuglyi, S., Kwiatkowski, J., Medynets, K. and Solomyak, B.. Invariant measures on stationary Bratteli diagrams. Ergod. Th. & Dynam. Sys. 30(4) (2010), 9731007.
[BS18] Boyland, P. and Severa, W.. Geometric representation of the infixmax S-adic family. Fund. Math. 240(1) (2018), 1550.
[BST14] Berthé, V., Steiner, W. and Thuswaldner, J. M.. Geometry, dynamics and arithmetic of $S$ -adic shifts. Preprint, 2014, arXiv:1410.0331v3.
[Cas94] Cassaigne, J.. An algorithm to test if a given circular HD0L-language avoids a pattern. Information Processing ’94 (Hamburg, 1994, IFIP Trans. A Comput. Sci. Tech., A-51, I) . North-Holland, Amsterdam, 1994, pp. 459464.
[CDM10] Crabb, M. J., Duncan, J. and McGregor, C. M.. Finiteness and recognizability problems for substitution maps on two symbols. Semigroup Forum 81(1) (2010), 7184.
[CFM08] Cassaigne, J., Ferenczi, S. and Messaoudi, A.. Weak mixing and eigenvalues for Arnoux–Rauzy sequences. Ann. Inst. Fourier (Grenoble) 58(6) (2008), 19832005.
[CFZ00] Cassaigne, J., Ferenczi, S. and Zamboni, L. Q.. Imbalances in Arnoux–Rauzy sequences. Ann. Inst. Fourier (Grenoble) 50(4) (2000), 12651276.
[CS01a] Canterini, V. and Siegel, A.. Automate des préfixes-suffixes associé à une substitution primitive. J. Théor. Nombres Bordeaux 13(2) (2001), 353369.
[CS01b] Canterini, V. and Siegel, A.. Geometric representation of substitutions of Pisot type. Trans. Amer. Math. Soc. 353(12) (2001), 51215144.
[DDMP16] Donoso, S., Durand, F., Maass, A. and Petite, S.. On automorphism groups of low complexity subshifts. Ergod. Th. & Dynam. Sys. 36(1) (2016), 6495.
[DHS99] Durand, F., Host, B. and Skau, C.. Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergod. Th. & Dynam. Sys. 19(4) (1999), 953993.
[DL12] Durand, F. and Leroy, J.. S-adic conjecture and Bratteli diagrams. C. R. Math. Acad. Sci. Paris 350(21–22) (2012), 979983.
[DL17] Durand, F. and Leroy, J.. The constant of recognizability is computable for primitive morphisms. J. Integer Seq. 20(4) (2017), 15, Art. 17.4.54.
[DM08] Downarowicz, T. and Maass, A.. Finite-rank Bratteli–Vershik diagrams are expansive. Ergod. Th. & Dynam. Sys. 28(3) (2008), 739747.
[Dur03] Durand, F.. Corrigendum and addendum to: ‘Linearly recurrent subshifts have a finite number of non-periodic subshift factors’ [Ergod. Th. & Dynam. Sys. 20(4) (2000), 1061–1078]. Ergod. Th. & Dynam. Sys. 23 (2003), 663669.
[Emm17] Emme, J.. Thermodynamic formalism and k-bonacci substitutions. Discrete Contin. Dyn. Syst. 37(7) (2017), 37013719.
[Fer96] Ferenczi, S.. Rank and symbolic complexity. Ergod. Th. & Dynam. Sys. 16(4) (1996), 663682.
[Fer97] Ferenczi, S.. Systems of finite rank. Colloq. Math. 73(1) (1997), 3565.
[Fis09] Fisher, A. M.. Nonstationary mixing and the unique ergodicity of adic transformations. Stoch. Dyn. 9(3) (2009), 335391.
[FPS17] Frick, S., Petersen, K. and Shields, S.. Dynamical properties of some adic systems with arbitrary orderings. Ergod. Th. & Dynam. Sys. 37(7) (2017), 21312162.
[FS14] Priebe Frank, N. and Sadun, L.. Fusion: a general framework for hierarchical tilings of ℝ d . Geom. Dedicata 171 (2014), 49186.
[FW65] Fine, N. J. and Wilf, H. S.. Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16 (1965), 109114.
[Hos86] Host, B.. Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable. Ergod. Th. & Dynam. Sys. 6(4) (1986), 529540.
[Høy17] Høynes, S.-M.. Finite-rank Bratteli–Vershik diagrams are expansive—a new proof. Math. Scand. 120(2) (2017), 195210.
[HRS05] Holton, C., Radin, C. and Sadun, L.. Conjugacies for tiling dynamical systems. Comm. Math. Phys. 254(2) (2005), 343359.
[JQY17] Janssen, J., Quas, A. and Yassawi, R.. Bratteli diagrams where random orders are imperfect. Proc. Amer. Math. Soc. 145(2) (2017), 721735.
[KS14] Klouda, K. and Starosta, Š.. Characterization of circular D0L-systems. Preprint, 2014, arXiv:1401.0038.
[Mar73] Martin, J. C.. Minimal flows arising from substitutions of non-constant length. Math. Syst. Theory 7 (1973), 7282.
[Med06] Medynets, K.. Cantor aperiodic systems and Bratteli diagrams. C. R. Math. Acad. Sci. Paris 342(1) (2006), 4346.
[MMY05] Marmi, S., Moussa, P. and Yoccoz, J.-C.. The cohomological equation for Roth-type interval exchange maps. J. Amer. Math. Soc. 18(4) (2005), 823872.
[Mos92] Mossé, B.. Puissances de mots et reconnaissabilité des points fixes d’une substitution. Theoret. Comput. Sci. 99(2) (1992), 327334.
[Mos96] Mossé, B.. Reconnaissabilité des substitutions et complexité des suites automatiques. Bull. Soc. Math. France 124(2) (1996), 329346.
[MS93] Mignosi, F. and Séébold, P.. If a DOL language is k-power free then it is circular. Automata, Languages and Programming (Lund, 1993) (Lecture Notes in Computer Science, 700) . Springer, Berlin, 1993, pp. 507518.
[Que10] Queffélec, M.. Substitution Dynamical Systems—Spectral Analysis (Lecture Notes in Mathematics, 1294) , 2nd edn. Springer, Berlin, 2010.
[Sol98] Solomyak, B.. Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discrete Comput. Geom. 20(2) (1998), 265279.
[Ver85] Vershik, A. M.. A theorem on the Markov periodical approximation in ergodic theory. J. Sov. Math. 28 (1985), 667674.
[VL92] Vershik, A. M. and Livshits, A. N.. Adic models of ergodic transformations, spectral theory, substitutions, and related topics. Representation Theory and Dynamical Systems (Advances in Soviet Mathematics, 9) . American Mathematical Society, Providence, RI, 1992, pp. 185204.
[Zor96] Zorich, A.. Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents. Ann. Inst. Fourier (Grenoble) 46(2) (1996), 325370.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed