Skip to main content
×
×
Home

Renormalization for Lorenz maps of monotone combinatorial types

  • DENIS GAIDASHEV (a1)
Abstract

Lorenz maps are maps of the unit interval with one critical point of order $\unicode[STIX]{x1D70C}>1$ and a discontinuity at that point. They appear as return maps of sections of the geometric Lorenz flow. We construct real a priori bounds for renormalizable Lorenz maps with certain monotone combinatorics and a sufficiently flat critical point, and use these bounds to show existence of periodic points of renormalization, as well as existence of Cantor attractors for dynamics of infinitely renormalizable Lorenz maps.

Copyright
References
Hide All
[1] Collet, P., Coullet, P. and Tresser, C.. Scenarios under constraint. J. Phys. Lett. 46(4) (1985), 143147.
[2] Gaidashev, D. and Winckler, B.. Existence of a Lorenz renormalization fixed point of an arbitrary critical order. Nonlinearity 25 (2012), 1819.
[3] Gambaudo, J.-M. and Martens, M.. Algebraic topology for minimal Cantor sets. Ann. Henri Poincaré 7(3) (2006), 423446.
[4] Granas, A. and Dugundji, J.. Fixed Point Theory (Springer Monographs in Mathematics) . Springer, New York, 2003.
[5] Guckenheimer, J. and Williams, R. F.. Structural stability of the Lorenz attractors. Publ. Math. Inst. Hautes Études Sci. 50 (1979), 5972.
[6] Hubbard, J. H. and Sparrow, C. T.. The classification of topologically expansive Lorenz maps. Comm. Pure Appl. Math. XLIII (1990), 431443.
[7] Lorenz, E. N.. Deterministic non-periodic flow. J. Atmos. Sci. 20 (1963), 130141.
[8] Martens, M. and de Melo, W.. Universal models for Lorenz maps. Ergod. Th. & Dynam. Sys. 21(3) (2001), 833860.
[9] Martens, M. and Winckler, B.. On the hyperbolicity of Lorenz renormalization. Comm. Math. Phys. 325(1) (2014), 185257.
[10] de Melo, W. and van Strien, S.. One-dimensional Dynamics (Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 25) . Springer, Berlin, 1993.
[11] Misiurewicz, M.. Absolutely continuous measures for certain maps of an interval. Publ. Math. Inst. Hautes Études Sci. 53 (1981), 1751.
[12] Williams, R. F.. The structure of the Lorenz attractors. Publ. Math. Inst. Hautes Études Sci. 50 (1979), 7379.
[13] Winckler, B.. A renormalization fixed point for Lorenz maps. Nonlinearity 23(6) (2010), 12911303.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed