Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-17T16:39:11.227Z Has data issue: false hasContentIssue false

Return- and hitting-time limits for rare events of null-recurrent Markov maps

Published online by Cambridge University Press:  13 October 2015

FRANÇOISE PÈNE
Affiliation:
Laboratoire de Mathématiques de Bretagne Atlantique, CNRS UMR 6205, Université de Bretagne Occidentale, 6, Avenue Victor Le Gorgeu, CS 93837 Brest Cedex 3, France email francoise.pene@univ-brest.fr, benoit.saussol@univ-brest.fr
BENOÎT SAUSSOL
Affiliation:
Laboratoire de Mathématiques de Bretagne Atlantique, CNRS UMR 6205, Université de Bretagne Occidentale, 6, Avenue Victor Le Gorgeu, CS 93837 Brest Cedex 3, France email francoise.pene@univ-brest.fr, benoit.saussol@univ-brest.fr
ROLAND ZWEIMÜLLER
Affiliation:
Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria email rzweimue@member.ams.org

Abstract

We determine limit distributions for return- and hitting-time functions of certain asymptotically rare events for conservative ergodic infinite measure preserving transformations with regularly varying asymptotic type. Our abstract result applies, in particular, to shrinking cylinders around typical points of null-recurrent renewal shifts and infinite measure preserving interval maps with neutral fixed points.

Type
Research Article
Copyright
© Cambridge University Press, 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, J.. An Introduction to Infinite Ergodic Theory. American Mathematical Society, Providence, RI, 1997.Google Scholar
Aaronson, J.. The asymptotic distributional behaviour of transformations preserving infinite measures. J. Anal. Math. 39 (1981), 203234.Google Scholar
Aaronson, J.. Random f-expansions. Ann. Probab. 14 (1986), 10371057.CrossRefGoogle Scholar
Abadi, M. and Galves, A.. Inequalities for the occurence times of rare events in mixing processes. The state of the art. Markov Process. Related fields 7 (2001), 97112.Google Scholar
Abadi, M. and Saussol, B.. Hitting and returning to rare events for all alpha-mixing processes. Stochastic Process. Appl. 121 (2011), 314323.CrossRefGoogle Scholar
Bingham, N. H., Goldie, C. M. and Teugels, J. L.. Regular Variation. Cambridge University Press, Cambridge, 1989.Google Scholar
Bruin, H., Saussol, B., Troubetzkoy, S. and Vaienti, S.. Return time statistics via inducing. Ergod. Th. & Dynam. Sys. 23 (2003), 9911013.Google Scholar
Bressaud, X. and Zweimüller, R.. Non-exponential law of entrance times in asymptotically rare events for intermittent maps with infinite invariant measure. Ann. Henri Poincaré 2 (2001), 501512.Google Scholar
Collet, P. and Galves, A.. Statistics of close visits to the indifferent fixed point of an interval map. J. Stat. Phys. 72(3–4) (1993), 459478.Google Scholar
Collet, P., Galves, A. and Schmitt, B.. Unpredictability of the occurrence time of a long laminar period in a model of temporal intermittency. Ann. Inst. H. Poincaré Phys. Théor. 57(3) (1992), 319331.Google Scholar
Campanino, M. and Isola, S.. Statistical properties of long return times in type I intermittency. Forum Math. 7(3) (1995), 331348.Google Scholar
Coelho, Z.. Asymptotic laws for symbolic dynamical systems. Topics in Dynamical Systems and Applications (London Mathematical Society Lecture Notes, 279) . Eds. Blanchard, F., Maass, A. and Nogueira, A.. Cambridge University Press, Cambridge, 2000, pp. 123165.Google Scholar
Collet, P.. Some ergodic properties of maps of the interval. Dynamical Systems (Temuco 1991/1992) (Travaux en Cours, 52) . Hermann, Paris, 1996, pp. 5591.Google Scholar
Dvoretzky, A. and Erdös, P.. Some problems on random walk in space. Proc. 2nd Berkeley Symp. on Math. Statist. Probab. (1951), 353367.Google Scholar
Galatolo, S., Kim, D. H. and Park, K. K.. The recurrence time for ergodic systems with infinite invariant measures. Nonlinearity 19 (2006), 25672580.Google Scholar
Haydn, N., Lacroix, Y. and Vaienti, S.. Hitting and return times in ergodic dynamical systems. Ann. Probab. 33 (2005), 20432050.CrossRefGoogle Scholar
Hirata, M., Saussol, B. and Vaienti, S.. Statistics of return times: a general framework and new applications. Commun. Math. Phys. 206 (1999), 3355.CrossRefGoogle Scholar
Haydn, N., Winterberg, N. and Zweimüller, R.. Return-time statistics, hitting-time statistics and Inducing. Ergodic Theory, Open Dynamics, and Coherent Structures (Proceedings in Mathematics & Statistics, 70) . Springer, New York, 2014, pp. 217227.CrossRefGoogle Scholar
Karamata, J.. Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull. Soc. Math. France 61 (1933), 5562 (in French).Google Scholar
Kontoyiannis, I.. Asymptotic recurrence and waiting times for stationary processes. J. Theor. Probab. 11 (1998), 795811.Google Scholar
Pitskel, B.. Poisson limit law for Markov chains. Ergod. Th. & Dynam. Sys. 11 (1991), 501513.CrossRefGoogle Scholar
Pène, F. and Saussol, B.. Quantitative recurrence in two-dimensional extended processes. Ann. Inst. H. Poincaré 45 (2009), 10651084.Google Scholar
Pène, F. and Saussol, B.. Back to balls in billiards. Commun. Math. Phys. 293 (2010), 837866.Google Scholar
Pène, F., Saussol, B. and Zweimüller, R.. Recurrence rates and hitting-time distributions for random walks on the line. Ann. Probab. 41 (2013), 619635.Google Scholar
Rychlik, M.. Bounded variation and invariant measures. Studia Math. 76 (1983), 6980.Google Scholar
Thaler, M.. Estimates of the invariant densities of endomorphisms with indifferent fixed points. Israel J. Math. 37 (1980), 303314.Google Scholar
Thaler, M.. Transformations on [0,1] with infinite invariant measures. Israel J. Math. 46 (1983), 6796.Google Scholar
Thaler, M.. A limit theorem for the Perron–Frobenius operator of transformations on [0,1] with indifferent fixed points. Israel J. Math. 91 (1995), 111127.Google Scholar
Thaler, M.. The Dynkin–Lamperti Arc–Sine laws for measure preserving transformations. Trans. Amer. Math. Soc. 350 (1998), 45934607.CrossRefGoogle Scholar
Thaler, M. and Zweimüller, R.. Distributional limit theorems in infinite ergodic theory. Probab. Theory Related Fields 135 (2006), 1552.Google Scholar
Zweimüller, R.. Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points. Nonlinearity 11 (1998), 12631276.Google Scholar
Zweimüller, R.. Ergodic properties of infinite measure preserving interval maps with indifferent fixed points. Ergod. Th. & Dynam. Sys. 20 (2000), 15191549.Google Scholar
Zweimüller, R.. Kuzmin, coupling, cones, and exponential mixing. Forum Math. 16 (2004), 447457.Google Scholar
Zweimüller, R.. Asymptotic orbit complexity of infinite measure preserving transformations. Discrete Contin. Dynam. Sys. 15 (2006), 353366.CrossRefGoogle Scholar
Zweimüller, R.. Infinite measure preserving transformations with compact first regeneration. J. d’Analyse Mathématique 103 (2007), 93131.Google Scholar
Zweimüller, R.. Mixing limit theorems for ergodic transformations. J. Theoret. Probab. 20 (2007), 10591071.Google Scholar
Zweimüller, R.. Waiting for long excursions and close visits to neutral fixed points of null-recurrent ergodic maps. Fund. Math. 198 (2008), 125138.Google Scholar
Zweimüller, R.. Measure preserving transformations similar to Markov shifts. Israel J. Math. 173 (2009), 421443.Google Scholar