Skip to main content
    • Aa
    • Aa

Simple proofs of some fundamental properties of the Julia set

    • Published online: 01 June 1999

Let $f$ be a holomorphic self-map of $\mathbb{C} \backslash \{ 0 \}, \mathbb{C}$, or the extended complex plane $\overline{\mathbb{C}}$ that is neither injective nor constant. This paper gives new and elementary proofs of the well-known fact that the Julia set of $f$ is a non-empty perfect set and coincides with the closure of the set of repelling cycles of $f$. The proofs use Montel–Caratheodory's theorem but do not use results from Nevanlinna theory.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 42 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd September 2017. This data will be updated every 24 hours.