Skip to main content

Some effective results for ×a×b


We provide effective versions of theorems of Furstenberg and Rudolph–Johnson regarding closed subsets and probability measures of ℝ/ℤ invariant under the action of a non-lacunary multiplicative semigroup of integers. In particular, we give an explicit rate at which the sequence {anbkx}n,k becomes dense for a,b fixed multiplicatively independent integers and x∈ℝ/ℤ Diophantine generic.

Hide All
[1]Baker, A. and Wüstholz, G.. Logarithmic forms and group varieties. J. Reine Angew. Math. 442 (1993), 1962.
[2]Bourgain, J., Glibichuk, A. and Konyagin, S.. Estimate for the number of sums and products and for exponential sums in fields of prime order. J. London Math. Soc. 73 (2006), 380398.
[3]Bourgain, J.. Sum-product theorems and exponential sum bounds in residue classes for general modulus. C. R. Math. Acad. Sci. Paris 344(6) (2007), 349352.
[4]Einsiedler, M., Lindenstrauss, E., Michel, P. and Venkatesh, A.. The distribution of periodic torus orbits on homogeneous spaces Duke Math. J. to appear.
[5]Furstenberg, H.. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967), 149.
[6]Host, B.. Nombres normaux, entropie, translations. Israel J. Math. 91(1–3) (1995), 419428.
[7]Johnson, A. S. A.. Measures on the circle invariant under multiplication by a nonlacunary subsemigroup of the integers. Israel J. Math. 77(1–2) (1992), 211240.
[8]Parry, W.. Squaring and cubing the circle—Rudolph’s theorem. Ergodic Theory of Z d Actions (Warwick, 1993–1994) (London Mathematical Society Lecture Note Series, 228). Cambridge University Press, Cambridge, 1996, pp. 177183.
[9]Rudolph, D. J.. ×2 and ×3 invariant measures and entropy. Ergod. Th. & Dynam. Sys. 10(2) (1990), 395406.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 36 *
Loading metrics...

Abstract views

Total abstract views: 139 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd June 2018. This data will be updated every 24 hours.