Skip to main content

Statistics of patterns in typical cut and project sets


In this article pattern statistics of typical cubical cut and project sets are studied. We give estimates for the rate of convergence of appearances of patches to their asymptotic frequencies. We also give bounds for repetitivity and repulsivity functions. The proofs use ideas and tools developed in discrepancy theory.

Hide All
[1] Adamczewski, B.. Symbolic discrepancy and self-similar dynamics. Ann. Inst. Fourier (Grenoble) 54(7) (2004), 22012234.
[2] Aliste-Prieto, J., Coronel, D. and Gambaudo, J.-M.. Rapid convergence to frequency for substitution tilings of the plane. Comm. Math. Phys. 306(2) (2011), 365380.
[3] Arnoux, P., Mauduit, C., Shiokawa, I. and Tamura, J.-I.. Complexity of sequences defined by billiard in the cube. Bull. Soc. Math. France 122(1) (1994), 112.
[4] Baryshnikov, Y.. Complexity of trajectories in rectangular billiards. Comm. Math. Phys. 174(1) (1995), 4356.
[5] Beresnevich, V., Dickinson, D. and Velani, S.. Measure theoretic laws for lim sup sets. Mem. Amer. Math. Soc. 179(846) (2006), x+91.
[6] Berthé, V. and Vuillon, L.. Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences. Discrete Math. 223(1–3) (2000), 2753.
[7] Bufetov, A. I. and Solomyak, B.. Limit theorems for self-similar tilings. Comm. Math. Phys. 319(3) (2013), 761789.
[8] Cassels, J. W. S.. An Introduction to Diophantine Approximation (Cambridge Tracts in Mathematics and Mathematical Physics, 45) . Cambridge University Press, New York, 1957.
[9] Dreher, F., Kesseböhmer, M., Mosbach, A., Samuel, T. and Steffens, M.. Regularity of aperiodic minimal subshifts. Bull. Math. Sci. (Mar 2017), doi:10.1007/s13373-017-0102-0.
[10] Fogg, N. P.. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in Mathematics, 1794) . Eds. Berthé, V., Ferenczi, S., Mauduit, C. and Siegel, A.. Springer, Berlin, 2002.
[11] Forrest, A., Hunton, J. and Kellendonk, J.. Topological invariants for projection method patterns. Mem. Amer. Math. Soc. 159(758) (2002), x+120.
[12] Grepstad, S. and Lev, N.. Sets of bounded discrepancy for multi-dimensional irrational rotation. Geom. Funct. Anal. 25(1) (2015), 87133.
[13] Gröger, M., Kesseböhmer, M., Mosbach, A., Samuel, T. and Steffens, M.. A classification of aperiodic order via spectral metrics & Jarník sets, Preprint, 2016, arXiv:1601.06435.
[14] Harman, G.. Metric Number Theory (London Mathematical Society Monographs. New Series, 18) . The Clarendon Press, Oxford University Press, New York, 1998.
[15] Haynes, A., Koivusalo, H. and Walton, J.. A characterization of linearly repetitive cut and project sets. Nonlinearity 31(2) (2018), 515539.
[16] Haynes, A., Koivusalo, H., Walton, J. and Sadun, L.. Gaps problems and frequencies of patches in cut and project sets. Math. Proc. Cambridge Philos. Soc. 161(1) (2016), 6585.
[17] Julien, A.. Complexity as a homeomorphism invariant for tiling spaces. Ann. Inst. Fourier (Grenoble) 67(2) (2017), 539577.
[18] Kesten, H.. On a conjecture of Erdős and Szüsz related to uniform distribution mod 1. Acta Arith. 12 (1966/1967), 193212.
[19] Kuipers, L. and Niederreiter, H.. Uniform Distribution of Sequences (Pure and Applied Mathematics) . Wiley-Interscience [John Wiley & Sons], New York, London, Sydney, 1974.
[20] Laczkovich, M.. Uniformly spread discrete sets in R d . J. Lond. Math. Soc. (2) 46(1) (1992), 3957.
[21] Lagarias, J. C. and Pleasants, P. A. B.. Local complexity of Delone sets and crystallinity. Canad. Math. Bull. 45(4) (2002), 634652; dedicated to Robert V. Moody.
[22] Matei, B. and Meyer, Y.. Simple quasicrystals are sets of stable sampling. Complex Var. Elliptic Equ. 55(8–10) (2010), 947964.
[23] Moody, R. V.. Meyer sets and their duals. The Mathematics of Long-Range Aperiodic Order (Waterloo, ON, 1995) (NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 489) . Kluwer, Dordrecht, 1997, pp. 403441.
[24] Morse, M. and Hedlund, G. A.. Symbolic dynamics. Amer. J. Math. 60(4) (1938), 815866.
[25] Morse, M. and Hedlund, G. A.. Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940), 142.
[26] Sadun, L.. Exact regularity and the cohomology of tiling spaces. Ergod. Th. & Dynam. Sys. 31(6) (2011), 18191834.
[27] Savinien, J.. A metric characterisation of repulsive tilings. Discrete Comput. Geom. 54(3) (2015), 705716.
[28] Shechtman, D., Blech, I., Gratias, D. and Cahn, J. W.. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53 (1984), 19511953.
[29] Solomyak, B.. Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discrete Comput. Geom. 20(2) (1998), 265279.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed