[AM10]
Austin, T. and Moore, C. C.. Continuity properties of measurable group cohomology. Math. Ann.
356 (2013), 885–937.

[AO74]
Akemann, C. A. and Ostrand, P. A.. On a tensor product C^{∗} -algebra associated with the free group on two generators. J. Math. Soc. Japan
27 (1975), 589–599.

[BHR12]
Boutonnet, R., Houdayer, C. and Raum, S.. Amalgamated free product type III factors with at most one Cartan subalgebra. Compos. Math.
150 (2014), 143–174.

[BISG15]
Boutonnet, R., Ioana, A. and Salehi Golsefidy, A.. Local spectral gap in simple Lie groups and applications. Invent. Math.
208 (2017), 715–802.

[BO08]
Brown, N. P. and Ozawa, N.. C^{∗} -Algebras and Finite-Dimensional Approximations
*(Graduate Studies in Mathematics, 88)*
. American Mathematical Society, Providence, RI, 2008.

[CFW81]
Connes, A., Feldman, J. and Weiss, B.. An amenable equivalence relation is generated by a single transformation. Ergod. Th. & Dynam. Sys.
1 (1981), 431–450.

[CJ81]
Connes, A. and Jones, V. F. R.. A II_{1} factor with two non-conjugate Cartan subalgebras. Bull. Amer. Math. Soc. (N.S.)
6 (1982), 211–212.

[Co72]
Connes, A.. Une classification des facteurs de type III. Ann. Sci. Éc. Norm. Supér. (4)
6 (1973), 133–252.

[Co74]
Connes, A.. Almost periodic states and factors of type III_{1}
. J. Funct. Anal.
16 (1974), 415–445.

[Co75a]
Connes, A.. Outer conjugacy classes of automorphisms of factors. Ann. Sci. Éc. Norm. Supér. (4)
8 (1975), 383–419.

[Co75b]
Connes, A.. Classification of injective factors. Cases II_{1} , II_{
∞
} , III_{𝜆} , 𝜆≠1. Ann. of Math. (2)
74 (1976), 73–115.

[FM75]
Feldman, J. and Moore, C. C.. Ergodic equivalence relations, cohomology, and von Neumann algebras. I, II. Trans. Amer. Math. Soc.
234 (1977), 289–324; 325–359.

[Ha85]
Haagerup, U.. Connes’ bicentralizer problem and uniqueness of the injective factor of type III_{1}
. Acta Math.
69 (1986), 95–148.

[HI15]
Houdayer, C. and Isono, Y.. Bi-exact groups, strongly ergodic actions and group measure space type III factors with no central sequence. Comm. Math. Phys.
348 (2016), 991–1015.

[HMV16]
Houdayer, C., Marrakchi, A. and Verraedt, P.. Fullness and Connes’
$\unicode[STIX]{x1D70F}$
invariant of type
$\text{III}$
tensor product factors. *Preprint*, 2016, arXiv:1611.07914.
[Jo81]
Jones, V. F. R.. Central sequences in crossed products of full factors. Duke Math. J.
49 (1982), 29–33.

[Kr67]
Krieger, W.. On non-singular transformations of a measure space. I, II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete
11 (1969), 83–97; 98–119.

[Kr75]
Krieger, W.. On ergodic flows and the isomorphism of factors. Math. Ann.
223 (1976), 19–70.

[KT06]
Kechris, A. S. and Tsankov, T.. Amenable actions and almost invariant sets. Proc. Amer. Math. Soc.
136 (2008), 687–697.

[Ma16]
Marrakchi, A.. Spectral gap characterization of full type III factors. J. Reine Angew. Math. to appear. Published online 12 January 2017, doi:10.1515/crelle-2016-0071.
[Mo75]
Moore, C. C.. Group extensions and cohomology for locally compact groups. III. Trans. Amer. Math. Soc.
221 (1976), 1–33.

[Oz03]
Ozawa, N.. Solid von Neumann algebras. Acta Math.
192 (2004), 111–117.

[Oz04]
Ozawa, N.. A Kurosh type theorem for type II_{1} factors. Int. Math. Res. Not. IMRN (2006), Art. ID 97560.

[Oz08]
Ozawa, N.. An example of a solid von Neumann algebra. Hokkaido Math. J.
38 (2009), 557–561.

[Oz16]
Ozawa, N.. A remark on fullness of some group measure space von Neumann algebras. Compos. Math.
152 (2016), 2493–2502.

[Po04]
Popa, S.. Some computations of 1-cohomology groups and construction of non orbit equivalent actions. J. Inst. Math. Jussieu
5 (2006), 309–332.

[Sc79]
Schmidt, K.. Asymptotically invariant sequences and an action of SL(2, ℤ) on the 2-sphere. Israel J. Math.
37 (1980), 193–208.

[Sc80]
Schmidt, K.. Amenability, Kazhdan’s property *T*, strong ergodicity and invariant means for ergodic group-actions. Ergod. Th. & Dynam. Sys.
1 (1981), 223–236.

[Sk88]
Skandalis, G.. Une notion de nucléarité en K-théorie (d’après J. Cuntz). J. K-Theory
1 (1988), 549–573.

[Ta03a]
Takesaki, M.. Theory of operator algebras. II. Encyclopaedia of Mathematical Sciences. Vol. 125
*(Operator Algebras and Non-commutative Geometry, 6)*
. Springer, Berlin, 2003.

[Ta03b]
Takesaki, M.. Theory of operator algebras. III. Encyclopaedia of Mathematical Sciences. Vol. 127
*(Operator Algebras and Non-commutative Geometry, 8)*
. Springer, Berlin, 2003.

[VV14]
Vaes, S. and Verraedt, P.. Classification of type III Bernoulli crossed products. Adv. Math.
281 (2015), 296–332.

[VW17]
Vaes, S. and Wahl, J.. Bernoulli actions of type
$\text{III}_{1}$
and
$\text{L}^{2}$
-cohomology. *Preprint*, 2017, arXiv:1705.00439.
[Zi76]
Zimmer, R.. Extensions of ergodic group actions. Illinois J. Math.
20 (1976), 373–409.

[Zi84]
Zimmer, R.. Ergodic theory and semisimple groups. Monographs in Mathematics. Vol. 81. Birkhäuser, Basel, 1984.