Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T03:49:06.267Z Has data issue: false hasContentIssue false

Subshifts and colorings on ascending HNN-extensions of finitely generated abelian groups

Published online by Cambridge University Press:  08 September 2021

EDUARDO SILVA*
Affiliation:
Département de Mathématiques et Applications, École Normale Supérieure, Paris, France

Abstract

For an ascending HNN-extension $G*_{\psi }$ of a finitely generated abelian group G, we study how a synchronization between the geometry of the group and weak periodicity of a configuration in $\mathcal {A}^{G*_{\psi }}$ forces global constraints on it, as well as in subshifts containing it. A particular case are Baumslag–Solitar groups $\mathrm {BS}(1,N)$ , $N\ge 2$ , for which our results imply that a $\mathrm {BS}(1,N)$ -subshift of finite type which contains a configuration with period $a^{N^\ell }\!, \ell \ge 0$ , must contain a strongly periodic configuration with monochromatic $\mathbb {Z}$ -sections. Then we study proper n-colorings, $n\ge 3$ , of the (right) Cayley graph of $\mathrm {BS}(1,N)$ , estimating the entropy of the associated subshift together with its mixing properties. We prove that $\mathrm {BS}(1,N)$ admits a frozen n-coloring if and only if $n=3$ . We finally suggest generalizations of the latter results to n-colorings of ascending HNN-extensions of finitely generated abelian groups.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alon, N., Briceño, R., Chandgotia, N., Magazinov, A. and Spinka, Y.. Mixing properties of colourings of the ${\mathbb{Z}}^d$ lattice. Combin. Probab. Comput. 30(3) (2020), 114.Google Scholar
Aubrun, N. and Kari, J.. Tiling problems on Baumslag–Solitar groups. Electron. Proc. Theor. Comput. Sci. (EPTCS) 128 (2013), 3546.CrossRefGoogle Scholar
Baumslag, G. and Solitar, D.. Some two-generator one-relator non-Hopfian groups. Bull. Amer. Math. Soc. 68(3) (1962), 199202.CrossRefGoogle Scholar
Ceccherini-Silberstein, T. and Coornaert, M.. Cellular Automata and Groups (Springer Monographs in Mathematics, 44). Springer, Berlin, 2010.CrossRefGoogle Scholar
Cyr, V., Franks, J., Kra, B. and Petite, S.. Distortion and the automorphism group of a shift. J. Mod. Dyn. 13(1) (2018), 147161.CrossRefGoogle Scholar
de La Harpe, P.. Topics in Geometric Group Theory. University of Chicago Press, Chicago, IL, 2003.Google Scholar
Esnay, J. and Moutot, E.. Weakly and strongly aperiodic subshifts of finite type on Baumslag–Solitar groups. Preprint, 2021, arXiv:2004.02534.CrossRefGoogle Scholar
Higman, G., Neumann, B. H. and Neuman, H.. Embedding theorems for groups. J. Lond. Math. Soc. s1–24(4) (1949), 247254.CrossRefGoogle Scholar
Kerr, D. and Li, H.. Ergodic Theory (Springer Monographs in Mathematics). Springer International Publishing, Cham, 2016.CrossRefGoogle Scholar
Lieb, E. H.. Residual entropy of square ice. Phys. Rev. 162 (1967), 162172.CrossRefGoogle Scholar
Löh, C.. Geometric Group Theory: An Introduction (Universitext). Springer, Cham, 2017.CrossRefGoogle Scholar
Lyndon, R. C. and Schupp, P. E.. Combinatorial Group Theory. Springer-Verlag, Berlin, 1977.Google Scholar
Meskin, S.. Nonresidually finite one-relator groups. Trans. Amer. Math. Soc. 164 (1972), 105114.CrossRefGoogle Scholar
Peled, R. and Spinka, Y.. Rigidity of proper colorings of ${\mathbb{Z}}^d$ . Preprint, 2020, arXiv:1808.03597.Google Scholar
Ray, G. and Spinka, Y.. Proper 3-colorings of ${\mathbb{Z}}^2$ are Bernoulli. Preprint, 2020, arXiv:2004.00028.Google Scholar