Skip to main content Accessibility help

Suffix conjugates for a class of morphic subshifts



Let $A$ be a finite alphabet and $f:~A^{\ast }\rightarrow A^{\ast }$ be a morphism with an iterative fixed point $f^{{\it\omega}}({\it\alpha})$ , where ${\it\alpha}\in A$ . Consider the subshift $({\mathcal{X}},T)$ , where ${\mathcal{X}}$ is the shift orbit closure of $f^{{\it\omega}}({\it\alpha})$ and $T:~{\mathcal{X}}\rightarrow {\mathcal{X}}$ is the shift map. Let $S$ be a finite alphabet that is in bijective correspondence via a mapping $c$ with the set of non-empty suffixes of the images $f(a)$ for $a\in A$ . Let ${\mathcal{S}}\subset S^{\mathbb{N}}$ be the set of infinite words $\mathbf{s}=(s_{n})_{n\geq 0}$ such that ${\it\pi}(\mathbf{s}):=c(s_{0})f(c(s_{1}))f^{2}(c(s_{2}))\cdots \in {\mathcal{X}}$ . We show that if $f$ is primitive, $f^{{\it\omega}}({\it\alpha})$ is aperiodic, and $f(A)$ is a suffix code, then there exists a mapping $H:~{\mathcal{S}}\rightarrow {\mathcal{S}}$ such that $({\mathcal{S}},H)$ is a topological dynamical system and ${\it\pi}:~({\mathcal{S}},H)\rightarrow ({\mathcal{X}},T)$ is a conjugacy; we call $({\mathcal{S}},H)$ the suffix conjugate of $({\mathcal{X}},T)$ . In the special case where $f$ is the Fibonacci or Thue–Morse morphism, we show that the subshift $({\mathcal{S}},T)$ is sofic, that is, the language of ${\mathcal{S}}$ is regular.



Hide All
[1]Allouche, J.-P. and Shallit, J.. Automatic Sequences: Theory, Applications, and Generalizations. Cambridge University Press, Cambridge, 2003.
[2]Cassaigne, J. and Nicolas, F.. Factor complexity. Combinatorics, Automata and Number Theory. Eds. Berthé, V. and Rigo, M.. Cambridge University Press, Cambridge, 2010.
[3]Cassaigne, J.. An algorithm to test if a given circular HD0L-language avoids a pattern. Information Processing ’94 (Hamburg, 1994), Vol. I (IFIP Trans. A Comput. Sci. Tech., A-51). North-Holland, Amsterdam, 1994, pp. 459464.
[4]Canterini, V. and Siegel, A.. Automate des préfixes-suffixes associé à une substitution primitive. J. Théor. Nombres Bordeaux 13 (2001), 353369.
[5]Currie, J, Rampersad, N and Saari, K. Extremal words in the shift orbit closure of a morphic sequence. Proceedings of Developments in Language Theory 2013 (Lecture Notes in Computer Science, 7907). Springer, Berlin, 2013, pp. 143154.
[6]Holton, C. and Zamboni, L. Q.. Descendants of primitive substitutions. Theory Comput. Syst. 32 (1999), 133157.
[7]Holton, C. and Zamboni, L. Q.. Directed graphs and substitutions. Theory Comput. Syst. 34 (2001), 545564.
[8]Klouda, K.. Bispecial factors in circular non-pushy D0L languages. Theoret. Comput. Sci. 445 (2012), 6374.
[9]Kůrka, P.. Topological and Symbolic Dynamics. Société Mathématique de France, Paris, 2003.
[10]Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.
[11]Lothaire, M.. Algebraic Combinatorics on Words (Encyclopedia of Mathematics and its Applications, 90). Cambridge University Press, Cambridge, 2002.
[12]Mignosi, F. and Séébold, P.. If a D0L language is k-power free then it is circular. Automata, Languages and Programming, 20th International Colloquium (Lecture Notes in Computer Science, 700). Springer, Berlin, 1993, pp. 507518.
[13]Mignosi, F., Restivo, A. and Sciortino, M.. Words and forbidden factors. Theoret. Comput. Sci. 273 (2002), 99117.
[14]Mossé, B.. Puissances de mots et reconnaissabilité des points fixes d’une substitution. Theoret. Comput. Sci. 99 (1992), 327334.
[15]Shallit, J.. Fife’s theorem revisited. Developments in Language Theory, 15th Int. Conf., DLT 2011 (Lecture Notes in Computer Science, 6795). Springer, Berlin, 2011, pp. 397405.
[16]Shur, A.. Combinatorial complexity of rational languages. Discr. Anal. Oper. Res., Ser. 1 12(2) (2005), 7899 (in Russian).


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed