No CrossRef data available.
Published online by Cambridge University Press: 19 September 2008
In this note we study Borel-probability measures on the unit tangent bundle ofa compact negatively curved manifold M that are invariant under the geodesic flow. We interpret the entropy of such a measure as a Hausdorff dimension with respect to a natural family of distances on the ideal boundary of the universal covering of M. This in term yields necessary and sufficient conditions for the existence of time preserving conjugacies of geodesic flows.