Skip to main content Accesibility Help
×
×
Home

Topological structure and entropy of mixing graph maps

  • GRZEGORZ HARAŃCZYK (a1), DOMINIK KWIETNIAK (a1) and PIOTR OPROCHA (a2) (a3)
Abstract

Let ${ \mathcal{P} }_{G} $ be the family of all topologically mixing, but not exact self-maps of a topological graph $G$ . It is proved that the infimum of topological entropies of maps from ${ \mathcal{P} }_{G} $ is bounded from below by $\log 3/ \Lambda (G)$ , where $\Lambda (G)$ is a constant depending on the combinatorial structure of $G$ . The exact value of the infimum on ${ \mathcal{P} }_{G} $ is calculated for some families of graphs. The main tool is a refined version of the structure theorem for mixing graph maps. It also yields new proofs of some known results, including Blokh’s theorem (topological mixing implies the specification property for maps on graphs).

Copyright
References
Hide All
[1]Alsedà, Ll., Baldwin, S., Llibre, J. and Misiurewicz, M.. Entropy of transitive tree maps. Topology 36 (2) (1997), 519532.
[2]Alsedà, Ll., del Río, M. A. and Rodríguez, J. A.. A splitting theorem for transitive maps. J. Math. Anal. Appl. 232 (2) (1999), 359375.
[3]Alsedà, Ll., del Río, M. A. and Rodríguez, J. A.. Transitivity and dense periodicity for graph maps. J. Difference Equ. Appl. 9 (6) (2003), 577598.
[4]Alsedà, Ll., Kolyada, S., Llibre, J. and Snoha, L’.. Entropy and periodic points for transitive maps. Trans. Amer. Math. Soc. 351 (4) (1999), 15511573.
[5]Alsedà, Ll., Llibre, J. and Misiurewicz, M.. Combinatorial Dynamics and Entropy in Dimension One (Advanced Series in Nonlinear Dynamics, 5), 2nd edn. World Scientific, River Edge, NJ, 2000.
[6]Baldwin, S.. Entropy estimates for transitive maps on trees. Topology 40 (3) (2001), 551569.
[7]Balibrea, F. and Snoha, L’.. Topological entropy of Devaney chaotic maps. Topology Appl. 133 (3) (2003), 225239.
[8]Banks, J.. Regular periodic decompositions for topologically transitive maps. Ergod. Th. & Dynam. Sys. 17 (3) (1997), 505529.
[9]Banks, J. and Trotta, B.. Weak mixing implies mixing for maps on topological graphs. J. Difference Equ. Appl. 11 (12) (2005), 10711080.
[10]Blanchard, F.. Topological chaos: What may this mean? J. Difference Equ. Appl. 15 (1) (2009), 2346.
[11]Block, L., Guckenheimer, J., Misiurewicz, M. and Young, L. S.. Periodic points and topological entropy of one dimensional maps. Global Theory of Dynamical Systems (Lecture Notes in Mathematics, 819). Springer, Berlin, 1980, pp. 1834.
[12]Blokh, A. M.. Dynamical systems on one-dimensional branched manifolds. I. Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. (46) (1986), 818.
[13]Blokh, A. M.. Dynamical systems on one-dimensional branched manifolds. II. Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. (47) (1987), 6777.
[14]Blokh, A. M.. Dynamical systems on one-dimensional branched manifolds. III. Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. (48) (1987), 3246.
[15]Bowen, R.. Periodic points and measures for axiom A-diffeomorphisms. Trans. Amer. Math. Soc. 154 (1971), 377397.
[16]Buzzi, J.. Specification on the interval. Trans. Amer. Math. Soc. 349 (7) (1997), 27372754.
[17]Coven, E. M. and Mulvey, I.. Transitivity and the centre for maps of the circle. Ergod. Th. & Dynam. Sys. 6 (1) (1986), 18.
[18]Croom, F. H.. Basic Concepts of Algebraic Topology (Undergraduate Texts in Mathematics, 51). Springer, New York, 1978.
[19]Dirbák, M.. Extensions of dynamical systems without increasing the entropy. Nonlinearity 21 (11) (2008), 26932713.
[20]Dirbák, M., Snoha, L’. and Špitalský, V.. Minimality, transitivity, mixing and topological entropy on spaces with a free interval. Ergod. Th. & Dynam. Sys., to appear, doi 10.1017/S0143385712000442, published online 21 August 2012.
[21]Harańczyk, G. and Kwietniak, D.. When lower entropy implies stronger Devaney chaos. Proc. Amer. Math. Soc. 137 (6) (2009), 20632073.
[22]Harańczyk, G., Kwietniak, D. and Oprocha, P.. A note on transitivity, sensitivity and chaos for graph maps. J. Difference Equ. Appl. 17 (10) (2011), 15491553.
[23]Kato, H.. Concerning continuum-wise fully expansive homeomorphisms of continua. Topology Appl. 53 (3) (1993), 239258.
[24]Kolyada, S. and Snoha, L’.. Some aspects of topological transitivity—a survey. Grazer Math. Ber. 334 (1997), 335.
[25]Kościelniak, P., Oprocha, P. and Tuncali, M.. Hereditary indecomposable inverse limits of graphs: shadowing, mixing and exactness. Proc. Amer. Math. Soc., to appear.
[26]Kwietniak, D. and Misiurewicz, M.. Exact Devaney chaos and entropy. Qual. Theory Dyn. Syst. 6 (1) (2005), 169179.
[27]Kwietniak, D. and Oprocha, P.. Topological entropy and chaos for maps induced on hyperspaces. Chaos Solitons Fractals 33 (2007), 7686.
[28]Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.
[29]Moise, E. E.. Geometric Topology in Dimensions 2 and 3 (Graduate Texts in Mathematics, 47). Springer, New York, 1977.
[30]Nadler, S. B. Jr. Continuum theory and graph theory: disconnection numbers. J. Lond. Math. Soc. (2) 47 (1) (1993), 167181.
[31]Oprocha, P. and Zhang, G.. Dimensional entropy over sets and fibres. Nonlinearity 24 (8) (2011), 23252346.
[32]Parry, W.. Symbolic dynamics and transformations of the unit interval. Trans. Amer. Math. Soc. 122 (1966), 368378.
[33]Robinson, C.. Dynamical Systems (Studies in Advanced Mathematics, 28), 2nd edn. CRC Press, Boca Raton, FL, 1999.
[34]Su, Y. and Ye, X.. Topological entropy of a class of transitive maps of a tree. Topology Proc. 24 (Summer) (1999), 597609.
[35]Špitalský, V.. Entropy and exact Devaney chaos on totally regular continua. Discrete Contin. Dyn. Syst. A 33 (7) (2013), 31353152.
[36]Ye, X.. Non-wandering points and the depth of a graph map. J. Aust. Math. Soc. A 69 (2) (2000), 143152.
[37]Ye, X.. Topological entropy of transitive maps of a tree. Ergod. Th. & Dynam. Sys. 20 (1) (2000), 289314.
[38]Yokoi, K.. Strong transitivity and graph maps. Bull. Pol. Acad. Sci. Math. 53 (2005), 377388.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed