Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T23:26:55.628Z Has data issue: false hasContentIssue false

Topological Wiener–Wintner ergodic theorems and a random L2 ergodic theorem

Published online by Cambridge University Press:  19 September 2008

Peter Walters
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, England

Abstract

We give some topological ergodic theorems inspired by the Wiener-Wintner ergodic theorem. These theorems are used to give results for uniquely ergodic transformations and to study unique equilibrium states for shift maps. These latter results give random L2 ergodic theorems for a finite set of commuting measure-preserving transformations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[A1]Assani, I.. Uniform Wiener-Wintner theorems for weakly mixing dynamical systems. Preprint, 1992.Google Scholar
[A2]Assani, I.. A Wiener-Wintner property for the helical transform. Ergod. Th. & Dynam. Sys. 12 (1992), 185194.CrossRefGoogle Scholar
[A–L–R]Assani, I., Lesigne, E. and Rudolph, D.. Wiener-Wintner return times ergodic theorem. Preprint 1994.CrossRefGoogle Scholar
[B]Bowen, R.. Some systems with unique equilibrium states. Maths. Systems Theory. 8 (1974), 193202.CrossRefGoogle Scholar
[Bou]Bourgain, J.. Double recurrence and almost sure convergence. J. reine argew. Math. 404 (1990), 140161.Google Scholar
[B–F–K]Brin, M. I., Feldman, J. and Katok, A.. Bernoulli diffeomorphisms and group extensions of dynamical systems with non-zero characteristic exponents. Annals. Math. 113 (1981), 159179.CrossRefGoogle Scholar
[C–V]Castaing, C. and Valadier, M., Convex analysis and measurable multifunctions (Lecture notes in mathematics, vol. 580). Springer, Berlin, 1975.Google Scholar
[F1]Furstenberg, H.. Strict ergodicity and transformations of the torus. Amer. J. Math. 83 (1961), 573601.CrossRefGoogle Scholar
[F2]Furstenberg, H.. Disjointness in ergodic theory and a problem in diophantine analysis. Math. Systems Theory 1 (1967), 179.CrossRefGoogle Scholar
[G–H]Guivarc'h, Y. and Hardy, J.. Théorèmes limites pour une classe de chaines de Markov et applications aux difféomorphismes d'Anosov. Ann. Inst. H. Poincaré 24 (1988), 7398.Google Scholar
[H–R]Haydn, N. T. A. and Ruelle, D.. Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification. Commun. Math. Phys. 148 (1992), 155167.CrossRefGoogle Scholar
[H–S]Hewitt, E. and Stromberg, K.. Real and Abstract Analysis. Springer, Berlin, 1965.Google Scholar
[J–P]Jones, R. and Parry, W.. Compact abelian group extensions of dynamical systems II. Comp. Math. 25 (1972), 135147.Google Scholar
[Led]Ledrappier, F.. Measures d'équilibre d'entropie complétement positive. Asteriuue 50 (1977), 251272.Google Scholar
[Les]Lesigne, E.. Thérémes ergodiques pour une translation sur une nilvarieté. Ergod. Th. & Dynam. Sys. 9 (1989), 115126.CrossRefGoogle Scholar
[L–P–R–W]Lacey, M., Petersen, K., Rudolph, D. and Wiedl, M.. Random ergodic theorems with universally representative sequences. Ann. Inst. H. Poincaré Probab. Statist. 30(3) (1994), 353395.Google Scholar
[O]Oxtoby, J. C.. Ergodic sets. Bull. AMS 58 (1952), 116136.CrossRefGoogle Scholar
[P]Petersen, K.. Ergodic Theory. Cambridge University Press;, 1983.CrossRefGoogle Scholar
[R]Robinson, E. A.. On uniform convergence in the Wiener-Wintner theorem. Journ. Lond. Math. Soc. 49 (1994), 493501.CrossRefGoogle Scholar
[W]Walters, P.. An Introduction to Ergodic Theory. Springer, Berlin, 1982.CrossRefGoogle Scholar
[W–W]Wiener, N. and Wintner, A.. Harmonic analysis and ergodic theory. Amer. J. Math. 63 (1941), 415426.CrossRefGoogle Scholar