Skip to main content
×
×
Home

Tower systems for linearly repetitive Delone sets

  • JOSÉ ALISTE-PRIETO (a1) and DANIEL CORONEL (a2)
Abstract

In this paper we study linearly repetitive Delone sets and prove, following the work of Bellissard, Benedetti and Gambaudo, that the hull of a linearly repetitive Delone set admits a properly nested sequence of box decompositions (tower system) with strictly positive and uniformly bounded (in size and norm) transition matrices. This generalizes a result of Durand for linearly recurrent symbolic systems. Furthermore, we apply this result to give a new proof of a classic estimation of Lagarias and Pleasants on the rate of convergence of patch frequencies.

Copyright
References
Hide All
[AP98]Anderson, J. E. and Putnam, I. F.. Topological invariants for substitution tilings and their associated C *-algebras. Ergod. Th. & Dynam. Sys. 18(3) (1998), 509537; MR 1631708(2000a:46112).
[BBG06]Bellissard, J., Benedetti, R. and Gambaudo, J. M.. Spaces of tilings, finite telescopic approximations and gap-labeling. Comm. Math. Phys. 261(1) (2006), 141; MR 2193205(2007c:46063).
[BDM05]Bressaud, X., Durand, F. and Maass, A.. Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems. J. Lond. Math. Soc. (2) 72(3) (2005), 799816; MR 2190338(2006j:37011).
[BDM10]Bressaud, X., Durand, F. and Maass, A.. Continuous and measurable eigenvalues of finite rank Bratteli–Vershik dynamical systems. Ergod. Th. & Dynam. Sys. 30(3) (2010), 639664.
[Bes08a]Besbes, A.. Uniform ergodic theorems on aperiodic linearly repetitive tilings and applications. Rev. Math. Phys. 20(5) (2008), 597623; MR 2422207.
[Bes08b]Besbes, A.. Contributions a l’étude de quelques systèmes quasi-crystallographics (in French). PhD Thesis, Université Pierre et Marie Curie, Paris, 2008.
[BG03]Benedetti, R. and Gambaudo, J. M.. On the dynamics of 𝔾-solenoids. Applications to Delone sets. Ergod. Th. & Dynam. Sys. 23(3) (2003), 673691; MR 1992658(2004f:37019).
[CDHM03]Cortez, M. I., Durand, F., Host, B. and Maass, A.. Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems. J. Lond. Math. Soc. (2) 67(3) (2003), 790804; MR 1967706(2004b:37018).
[CFS82]Cornfeld, I. P., Fomin, S. V. and Sinaĭ, Ya. G.. Ergodic Theory (Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 245). Springer, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ; MR 832433(87f:28019).
[CGM07]Cortez, M. I., Gambaudo, J. M. and Maass, A.. Rotation topological factors of minimal ℤd-actions of the Cantor set. Trans. Amer. Math. Soc. 359(5) (2007), 23052315; MR 2276621(2007k:37010).
[Cor]Coronel, D.. The cohomological equation over dynamical systems arising from Delone sets. Ergod. Th. & Dynam. Sys., doi:10.1017/S0143385710000209.
[DL06]Damanik, D. and Lenz, D.. Substitution dynamical systems: characterization of linear repetitivity and applications. J. Math. Anal. Appl. 321(2) (2006), 766780; MR 2241154(2007d:37008).
[Dur00]Durand, F.. Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Th. & Dynam. Sys. 20(4) (2000), 10611078; MR 1779393(2001m:37022).
[For00]Forrest, A.. A Bratteli diagram for commuting homeomorphisms of the Cantor set. Internat. J. Math. 11(2) (2000), 177200; MR 1754619(2001d:37008).
[Ghy99]Ghys, É.. Laminations par surfaces de Riemann. Dynamique et Géométrie Complexes (Lyon, 1997) (Panoramas et Synthèses, 8). Société Mathématique de France, Paris, 1999, pp. 49; 95MR 1760843(2001g:37068).
[GM06]Gambaudo, J.-M. and Martens, M.. Algebraic topology for minimal Cantor sets. Ann. Henri Poincaré 7(3) (2006), 423446; MR 2226743(2006m:37007).
[GMPS10]Giordano, T., Matui, H., Putnam, I. F. and Skau, C. F.. Orbit equivalence for Cantor minimal ℤd-systems. Invent. Math. 179(1) (2010), 119158.
[HPS92]Herman, R. H., Putnam, I. F. and Skau, C. F.. Ordered Bratteli diagrams, dimension groups and topological dynamics. Internat. J. Math. 3(6) (1992), 827864; MR 1194074(94f:46096).
[KP00]Kellendonk, J. and Putnam, I. F.. Tilings, C *-algebras, and K-theory (Directions in Mathematical Quasicrystals, 13). American Mathematical Society, Providence, RI, 2000, pp. 177206; MR 1798993(2001m:46153).
[Len04]Lenz, D.. Aperiodic linearly repetitive Delone sets are densely repetitive. Discrete Comput. Geom. 31(2) (2004), 323326; MR 2060644(2005a:37027).
[LMS02]Lee, J. Y., Moody, R. V. and Solomyak, B.. Pure point dynamical and diffraction spectra. Ann. Henri Poincaré 3(5) (2002), 10031018; MR 1937612(2004a:52040).
[LP03]Lagarias, J. C. and Pleasants, P. A. B.. Repetitive Delone sets and quasicrystals. Ergod. Th. & Dynam. Sys. 23(3) (2003), 831867; MR 1992666(2005a:52018).
[LS05]Lenz, D. and Stollmann, P.. An ergodic theorem for Delone dynamical systems and existence of the integrated density of states. J. Anal. Math. 97 (2005), 124; MR 2274971(2007m:37020).
[Moo97]Moody (ed.), R. V.. The Mathematics of Long-range Aperiodic Order (NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 489). Kluwer Academic Publishers Group, Dordrecht, 1997; MR 1460016(98a:52001).
[Pri97]Priebe, N. M.. Detecting hierarchy in tiling dynamical systems via derived Voronoï tessellations. PhD Thesis, University of North Carolina at Chapel Hill, 1997.
[PS01]Priebe, N. and Solomyak, B.. Characterization of planar pseudo-self-similar tilings. Discrete Comput. Geom. 26(3) (2001), 289306; MR 1854103(2002j:37029).
[Rob04]Arthur Robinson, E. Jr. Symbolic Dynamics and Tilings of ℝd (Symbolic Dynamics and its Applications, 60). American Mathematical Society, Providence, RI, 2004, pp. 81119; MR 2078847(2005h:37036).
[SBGC84]Shecthman, D., Blech, I., Gratias, D. and Cahn, J. W.. Metallic phase with long range orientational order and no translational symetry. Phys. Rev. Lett. 53(20) (1984), 19511954.
[Sen81]Seneta, E.. Nonnegative Matrices and Markov Chains, 2nd edn(Springer Series in Statistics). Springer, New York, 1981; MR 719544(85i:60058).
[Sen95]Senechal, M.. Quasicrystals and Geometry. Cambridge University Press, Cambridge, 1995; MR 1340198(96c:52038).
[Sol98]Solomyak, B.. Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discrete Comput. Geom. 20(2) (1998), 265279; MR 1637896(99f:52028).
[SW03]Sadun, L. and Williams, R. F.. Tiling spaces are Cantor set fiber bundles. Ergod. Th. & Dynam. Sys. 23(1) (2003), 307316; MR 1971208(2004a:37023).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed