[1]
Barbieri, S., Kari, J. and Salo, V.. The Group of Reversible Turing Machines. Springer International Publishing, Cham, 2016, pp. 49–62.

[3]
Boykett, T., Kari, J. and Salo, V.. Strongly Universal Reversible Gate Sets. Springer International Publishing, Cham, 2016, pp. 239–254.

[4]
Boyle, M.. Some sofic shifts cannot commute with nonwandering shifts of finite type. Illinois J. Math.
48(4) (2004), 1267–1277.

[5]
Boyle, M.. Open problems in symbolic dynamics. Geometric and Probabilistic Structures in Dynamics
*(Contemporary Mathematic, 469)*
. American Mathematical Society, Providence, RI, 2008, pp. 69–118.

[7]
Boyle, M. and Fiebig, U.-R.. The action of inert finite-order automorphisms on finite subsystems of the shift. Ergod. Th. & Dynam. Sys.
11(03) (1991), 413–425.

[8]
Boyle, M., Lind, D. and Rudolph, D.. The automorphism group of a shift of finite type. Trans. Amer. Math. Soc.
306(1) (1988), 71–114.

[10]
Boyle, M. and Tuncel, S.. Infinite-to-one codes and Markov measures. Trans. Amer. Math. Soc.
285(2) (1984), 657–684.

[11]
Cannon, J. W., Floyd, W. J. and Parry, W. R.. Introductory notes on Richard Thompson’s groups. Enseign. Math.
42 (1996), 215–256.

[12]
Ceccherini-Silberstein, T. and Coornaert, M.. Cellular Automata and Groups
*(Springer Monographs in Mathematics)*
. Springer, Berlin, 2010.

[13]
Charney, R.. An introduction to right-angled artin groups. Geom. Dedicata
125(1) (2007), 141–158.

[14]
Coven, E. and Yassawi, R.. Endomorphisms and automorphisms of minimal symbolic systems with sublinear complexity. *Preprint*, 2014, https://arxiv.org/abs/1412.0080. [16]
Dixon, J. D. and Mortimer, B.. Permutation Groups. Vol. 163. Springer, New York, 1996.

[17]
Donoso, S., Durand, F., Maass, A. and Petite, S.. On automorphism groups of low complexity subshifts. Ergod. Th. & Dynam. Sys.
36(01) (2016), 64–95.

[18]
Frisch, J., Schlank, T. and Tamuz, O.. Normal amenable subgroups of the automorphism group of the full shift. *Ergod. Th. & Dynam. Sys.* doi:10.1017/etds.2017.72, Published online 7 September 2017, pp. 1–9. [19]
Hedlund, G. A.. Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theory
3 (1969), 320–375.

[20]
Host, B. and Parreau, F.. Homomorphismes entre systèmes dynamiques définis par substitutions. Ergod. Th. & Dynam. Sys.
9(8) (1989), 469–477.

[21]
Kari, J.. Representation of reversible cellular automata with block permutations. Theory Comput. Syst.
29 (1996), 47–61.

[22]
Kari, J.. Theory of cellular automata: a survey. Theoret. Comput. Sci.
334(1–3) (2005), 3–33.

[23]
Kari, J.. Universal pattern generation by cellular automata. Theoret. Comput. Sci.
429 (2012), 180–184.

[24]
Kari, J. and Ollinger, N.. Periodicity and immortality in reversible computing. Proceedings of the 33rd International Symposium on Mathematical Foundations of Computer Science, MFCS ’08. Springer, Berlin, 2008, pp. 419–430.

[25]
Kim, K. H. and Roush, F. W.. On the automorphism groups of subshifts. Pure Math. Appl.
1(4) (1990), 203–230.

[26]
Kim, K. H., Roush, F. W. and Wagoner, J. B.. Characterization of inert actions on periodic points. Part I. Forum Math.
12 (2000), 565–602.

[27]
Kim, K. H., Roush, F. W. and Wagoner, J. B.. Characterization of inert actions on periodic points. Part II. Forum Math.
12 (2000), 671–712.

[28]
Lafont, Y.. Towards an algebraic theory of boolean circuits. J. Pure Appl. Algebra
184 (2003).

[29]
Lind, D. A.. The entropies of topological Markov shifts and a related class of algebraic integers. Ergod. Th. & Dynam. Sys.
4(6) (1984), 283–300.

[30]
Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.

[31]
Lind, D. and Schmidt, K.. Homoclinic points of algebraic ℤ^{
d
}-actions. J. Amer. Math. Soc.
12(4) (1999), 953–980.

[32]
Lukkarila, V.. Sensitivity and topological mixing are undecidable for reversible one-dimensional cellular automata. J. Cell. Autom.
5(3) (2010), 241–272.

[33]
Matui, H.. Some remarks on topological full groups of cantor minimal systems. Internat. J. Math.
17(02) (2006), 231–251.

[34]
McGoff, K.. Random subshifts of finite type. Ann. Probab.
40(2) (2012), 648–694.

[35]
Nasu, M.. Textile systems for endomorphisms and automorphisms of the shift. Mem. Amer. Math. Soc.
114(546) (1995), viii + 215.

[36]
Nasu, M.. Textile systems and one-sided resolving automorphisms and endomorphisms of the shift. Ergod. Th. & Dynam. Sys.
28 (2008), 167–209.

[37]
Olli, J.. Endomorphisms of sturmian systems and the discrete chair substitution tiling system. Dyn. Syst.
33(9) (2013), 4173–4186.

[38]
Patrick Ryan, J.. The shift and commutativity. Math. Syst. Theory
6(1–2) (1972), 82–85.

[39]
Salo, V.. Subshifts with simple cellular automata. *PhD Thesis*, University of Turku, 2014.

[40]
Salo, V.. Toeplitz subshift whose automorphism group is not finitely generated. Colloquium Math.
146 (2017), 53–76.

[41]
Salo, V.. A note on subgroups of automorphism groups of full shifts. *Ergod. Th. & Dynam. Sys.* doi:10.1017/etds.2016.95, Published online 8 November 2016, pp. 1–13. [43]
Salo, V. and Törmä, I.. Color blind cellular automata. J. Cell. Autom.
9(5–6) (2014), 477–509.