Skip to main content
×
×
Home

Translation numbers for a class of maps on the dynamical systems arising from quasicrystals in the real line

  • JOSÉ ALISTE-PRIETO (a1)
Abstract

In this paper, we study translation sets for non-decreasing maps of the real line with a pattern-equivariant displacement with respect to a quasicrystal. First, we establish a correspondence between these maps and self maps of the continuous hull associated with the quasicrystal that are homotopic to the identity and preserve orientation. Then, by using first-return times and induced maps, we provide a partial description for the translation set of the latter maps in the case where they have fixed points and obtain the existence of a unique translation number in the case where they do not have fixed points. Finally, we investigate the existence of a semiconjugacy from a fixed-point-free map homotopic to the identity on the hull to the translation given by its translation number. We concentrate on semiconjugacies that are also homotopic to the identity and, under a boundedness condition, we prove a generalization of Poincaré’s theorem, finding a sufficient condition for such a semiconjugacy to exist depending on the translation number of the given map.

Copyright
References
Hide All
[1]Bellissard, J., Benedetti, R. and Gambaudo, J.-M.. Spaces of tilings, finite telescopic approximations and gap-labeling. Commun. Math. Phys. 261(1) (2006), 141.
[2]Benedetti, R. and Gambaudo, J.-M.. On the dynamics of 𝔾-solenoids. Applications to Delone sets. Ergod. Th. & Dynam. Sys. 23(3) (2003), 673691.
[3]Cornfeld, I. P., Fomin, S. V. and Sinaĭ, Ya. G.. Ergodic Theory (Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 245). Springer, New York, 1982 (Translated from the Russian by A. B. Sosinskiĭ).
[4]Clark, A.. The dynamics of maps of solenoids homotopic to the identity. Continuum Theory (Denton, TX, 1999) (Lecture Notes in Pure and Applied Mathematics, 230). Dekker, New York, 2002, pp. 127136.
[5]Durand, F., Host, B. and Skau, C.. Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergod. Th. & Dynam. Sys. 19(4) (1999), 953993.
[6]Fogg, N. P.. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in Mathematics, 1794). Eds. Berthé, V., Ferenczi, S., Mauduit, C. and Siegel, A.. Springer, Berlin, 2002.
[7]Gambaudo, J.-M., Guiraud, P. and Petite, S.. Minimal configurations for the Frenkel–Kontorova model on a quasicrystal. Commun. Math. Phys. 265(1) (2006), 165188.
[8]Glasner, E.. Ergodic Theory via Joinings (Mathematical Surveys and Monographs, 101). American Mathematical Society, Providence, RI, 2003.
[9]Geller, W. and Misiurewicz, M.. Rotation and entropy. Trans. Amer. Math. Soc. 351(7) (1999), 29272948.
[10]Herman, M.-R.. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol d et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58(3) (1983), 453502.
[11]Hof, A.. A remark on Schrödinger operators on aperiodic tilings. J. Statist. Phys. 81(3–4) (1995), 851855.
[12]Herman, R. H., Putnam, I. F. and Skau, C. F.. Ordered Bratteli diagrams, dimension groups and topological dynamics. Int. J. Math. 3(6) (1992), 827864.
[13]Jäger, T. H.. Linearization of conservative toral homeomorphisms. Invent. Math. 176(3) (2009), 601616.
[14]Jäger, T. H. and Stark, J.. Towards a classification for quasiperiodically forced circle homeomorphisms. J. London Math. Soc. (2) 73(3) (2006), 727744.
[15]Kellendonk, J.. Pattern-equivariant functions and cohomology. J. Phys. A: Math. Gen. 36(21) (2003), 57655772.
[16]Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of Mathematics and its Applications, 54). Cambridge University Press, Cambridge, 1995 (With a supplementary chapter by Katok and Leonardo Mendoza).
[17]Kellendonk, J. and Putnam, I. F.. Tilings, C*-algebras, and K-theory. Directions in Mathematical Quasicrystals (CRM Monograph Series, 13). American Mathematical Society, Providence, RI, 2000, pp. 177206.
[18]Kwapisz, J.. Poincaré rotation number for maps of the real line with almost periodic displacement. Nonlinearity 13(5) (2000), 18411854.
[19]Lee, J.-Y., Moody, R. V. and Solomyak, B.. Pure point dynamical and diffraction spectra. Ann. Henri Poincaré 3(5) (2002), 10031018.
[20]Lagarias, J. C. and Pleasants, P. A. B.. Repetitive Delone sets and quasicrystals. Ergod. Th. & Dynam. Sys. 23(3) (2003), 831867.
[21]Mañé, R.. Ergodic Theory and Differentiable Dynamics (Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 8). Springer, Berlin, 1987 (Translated from the Portuguese by Silvio Levy).
[22]Misiurewicz, M. and Ziemian, K.. Rotation sets for maps of tori. J. London Math. Soc. (2) 40(3) (1989), 490506.
[23]Putnam, I. F.. The C*-algebras associated with minimal homeomorphisms of the Cantor set. Pacific J. Math. 136(2) (1989), 329353.
[24]Arthur Robinson, E. Jr. Symbolic dynamics and tilings of ℝd. Symbolic Dynamics and its Applications (Proceedings of Symposia in Applied Mathematics, 60). American Mathematical Society, Providence, RI, 2004, pp. 81119.
[25]Radin, C. and Sadun, L.. Isomorphism of hierarchical structures. Ergod. Th. & Dynam. Sys. 21(4) (2001), 12391248.
[26]Rudolph, D. J.. Markov tilings of Rn and representations of Rn actions. Measure and Measurable Dynamics (Rochester, NY, 1987) (Contemporary Mathematics, 94). American Mathematical Society, Providence, RI, 1989, pp. 271290.
[27]Shecthman, D., Blech, I., Gratias, D. and Cahn, J. W.. Metallic phase with long range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20) (1984), 19511954.
[28]Schlottmann, M.. Generalized model sets and dynamical systems. Directions in Mathematical Quasicrystals (CRM Monograph Series, 13). American Mathematical Society, Providence, RI, 2000, pp. 143159.
[29]Shvetsov, Y.. Rotation of flows on generalized solenoids. PhD Thesis, Montana State University, 2003.
[30]Wang, H.. Proving theorems by pattern recognition II. Bell Syst. Tech. J. 40 (1961), 141.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed