Skip to main content Accessibility help

Wandering intervals in affine extensions of self-similar interval exchange maps: the cubic Arnoux–Yoccoz map



In this article, we provide sufficient conditions on a self-similar interval exchange map, whose renormalization matrix has complex eigenvalues of modulus greater than one, for the existence of affine interval exchange maps with wandering intervals that are semi-conjugate with it. These conditions are based on the algebraic properties of the complex eigenvalues and the complex fractals built from the natural substitution emerging from self-similarity. We show that the cubic Arnoux–Yoccoz interval exchange map satisfies these conditions.



Hide All
[ABB11] Arnoux, P., Bernat, J. and Bressaud, X.. Geometrical models for substitutions. Exp. Math. 20(1) (2011), 97127.
[AY81] Arnoux, P. and Yoccoz, J.-C.. Construction de difféomorphismes pseudo-Anosov. C. R. Acad. Sci. Paris Sér. I Math. 292(1) (1981), 7578.
[Bar99] Barreto, R.. 1999 On $C^{r}$ -class of conjugacy between affine interval exchange maps and its isometric model. PhD Thesis, Instituto Nacional de Matemática Pura e Aplicada.
[BBH14] Bressaud, X., Bufetov, A. I. and Hubert, P.. Deviation of ergodic averages for substitution dynamical systems with eigenvalues of modulus 1. Proc. Lond. Math. Soc. (3) 109(2) (2014), 483522.
[BHM10] Bressaud, X., Hubert, P. and Maass, A.. Persistence of wandering intervals in self-similar affine interval exchange transformations. Ergod. Th. & Dynam. Sys. 30(3) (2010), 665686.
[CG97] Camelier, R. and Gutiérrez, C.. Affine interval exchange transformations with wandering intervals. Ergod. Th. & Dynam. Sys. 17(6) (1997), 13151338.
[Cob02] Cobo, M.. Piece-wise affine maps conjugate to interval exchanges. Ergod. Th. & Dynam. Sys. 22(2) (2002), 375407.
[CS01] Canterini, V. and Siegel, A.. Automate des préfixes-suffixes associé à une substitution primitive. J. Théor. Nombres Bordeaux 13(2) (2001), 353369.
[Den32] Denjoy, A.. Sur les courbes définies par les équations différentielles à la surface du tore. J. Math. Pures Appl. (9) 11(9) (1932), 333376.
[Fog02] Fogg, P.. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in Mathematics, 1794) . Springer, Berlin, 2002.
[Kea75] Keane, M.. Interval exchange transformations. Math. Z. 141(1) (1975), 2531.
[Lev87] Levitt, G.. La décomposition dynamique et la différentiabilité des feuilletages des surfaces. Ann. Inst. Fourier (Grenoble) 37(3) (1987), 85116.
[LPV07] Lowenstein, J. H., Poggiaspalla, G. and Vivaldi, F.. Interval exchange transformations over algebraic number fields: the cubic Arnoux–Yoccoz model. Dyn. Syst. 22(1) (2007), 73106.
[LPV08] Lowenstein, J. H., Poggiaspalla, G. and Vivaldi, F.. Geometric representation of interval exchange maps over algebraic number fields. Nonlinearity 21(1) (2008), 149177.
[Mes00] Messaoudi, A.. Frontière du fractal de Rauzy et système de numération complexe. Acta Arith. 95(3) (2000), 195224.
[MMY10] Marmi, S., Moussa, P. and Yoccoz, J.-C.. Affine interval exchange maps with a wandering interval. Proc. Lond. Math. Soc. (3) 100(3) (2010), 639669.
[Mos92] Mossé, B.. Puissances de mots et reconnaissabilité des points fixes d’une substitution. Theoret. Comput. Sci. 99(2) (1992), 327334.
[Que87] Queffélec, M.. Substitution Dynamical Systems—Spectral Analysis (Lecture Notes in Mathematics, 1294) . Springer, Berlin, 1987.
[Vee78] Veech, W.. Interval exchange transformations. J. Anal. Math. 33(1) (1978), 222272.
[Vee82] Veech, W.. Gauss measures for transformations on the space of interval exchange maps. Ann. of Math. (2) 115(1) (1982), 201242.
[Vee84] Veech, W.. The metric theory of interval exchange transformations I. Generic spectral properties. Amer. J. Math. 106(6) (1984), 13311359.
[Via06] Viana, M.. Ergodic theory of interval exchange maps. Rev. Mat. Complut. 19(1) (2006), 7100.
[Zor96] Zorich, A.. Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents. Ann. Inst. Fourier (Grenoble) 46(2) (1996), 325370.

Related content

Powered by UNSILO

Wandering intervals in affine extensions of self-similar interval exchange maps: the cubic Arnoux–Yoccoz map



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.