Skip to main content

Fragmentation of biofilm-seeded bacterial aggregates in shear flow

  • E. P. KIGHTLEY (a1) (a2), A. PEARSON (a1) (a2), J. A. EVANS (a3) and D. M. BORTZ (a1)

We present a model for the force acting to fragment a biofilm-seeded microbial aggregate in shear flow, which we derive by coupling an existing model for the shape and orientation of a deforming ellipsoid with one for the surface force density on a solid ellipsoid. The model can be used to simulate the motion, shape, surface force density, and breakage of colloidal aggregates in shear flow. We apply the model to the case of exhaustive fragmentation of microbial aggregates in order to compute a post-fragmentation density function, indicating the likelihood of a fragmenting aggregate yielding daughter aggregates of a certain size.

Hide All

EPK is supported by the Interdisciplinary Quantitative Biology Program at the BioFrontiers Institute, University of Colorado Boulder (NSF IGERT 1144807) and by an NSF GRFP (DGE 1144083). This work was supported in part by grant NSF-DMS 1225878 to DMB.

Hide All
[1] Blaser, S. (2000) Break-up of flocs in contraction and swirling flows. Colloids Surf. Physicochem. Eng. Asp. 166 (1–3), 215223.
[2] Blaser, S. (2000) Flocs in shear and strain flows. J. Colloid Interface Sci. 225 (2), 273284.
[3] Blaser, S. (2002) Forces on the surface of small ellipsoidal particles immersed in a linear flow field. Chem. Eng. Sci. 57 (3), 515526.
[4] Bortz, D. M., Jackson, T. L., Taylor, K. A., Thompson, A. P. & Younger, J. G. (2008) Klebsiella pneumoniae flocculation dynamics. Bull. Math. Biol. 70 (3), 745768.
[5] Bratby, J. (2008) Coagulation and Flocculation in Water and Wastewater Treatment, 2nd ed., International Water Association, Seattle, WA.
[6] Byrne, E., Dzul, S., Solomon, M., Younger, J. & Bortz, D. M. (2011) Postfragmentation density function for bacterial aggregates in laminar flow. Phys. Rev. E 83 (4), 041911.
[7] Gaboriaud, F., Gee, M. L., Strugnell, R. & Duval, J. F. L. (2008) Coupled electrostatic, hydrodynamic, and mechanical properties of acterial interfaces in aqueous media. Langmuir 24 (19), 1098810995.
[8] Hammond, J. F., Stewart, E., Younger, J. G., Solomon, M. J. & Bortz, D. M. (2014) Variable viscosity and density biofilm simulations using an immersed boundary method, Part I: Numerical scheme and convergence results. Comput. Model. Eng. Sci. 98 (3), 295340.
[9] Jackson, N. E. & Tucker, C. L. III (2003) A model for large deformation of an ellipsoidal droplet with interfacial tension. J. Rheol. 47 (3), 659682.
[10] James, D., Yogachandran, N., Loewen, M., Liu, H. & Davis, A. (2003) Floc rupture in extensional flow. J. Pulp Pap. Sci. 29 (11), 377383.
[11] Kléman, M. & Lavrentovich, O. D. (2003) Soft Matter Physics: An Introduction, Springer, New York.
[12] Kobayashi, M. (2004) Breakup and strength of polystyrene latex flocs subjected to a converging flow. Colloids Surf. Physicochem. Eng. Asp. 235 (1–3), 7378.
[13] Kobayashi, M. (2005) Strength of natural soil flocs. Water Res. 39 (14), 32733278.
[14] Liss, S. N., Droppo, I. G., Leppard, G. G. & Milligan, T. G. (editors) (2007) Flocculation in Natural and Engineered Environmental Systems, CRC Press, Boca Raton, FL.
[15] Mirzaev, I. & Bortz, D. M. (2015) Criteria for linearized stability for a size-structured population model. arXiv : 1502.02754.
[16] Mirzaev, I. & Bortz, D. M. (2017) A numerical framework for computing steady states of structured population models and their stability. Math. Biosci. Eng. 14 (4), 933952.
[17] Mirzaev, I., Byrne, E. C. & Bortz, D. M. (2016) An inverse problem for a class of conditional probability measure-dependent evolution equations. Inverse Probl. 32 (9), 095005.
[18] Nopens, I. (2005) Modelling the Activated Sludge Flocculation Process: A Population Balance Approach. PhD, Universiteit Gent.
[19] Rueb, C. J. & Zukoski, C. F. (1997) Viscoelastic properties of colloidal gels. J. Rheol. 41 (2), 197218.
[20] Solsvik, J., Tangen, S. & Jakobsen, H. A. (2013) On the constitutive equations for fluid particle breakage. Rev Chem. Eng. 29 (5), 241356.
[21] Stotsky, J. A., Hammond, J. F., Pavlovsky, L. Stewart, E. J., Younger, J. G., Solomon, M. J. & Bortz, D. M. (2016) Variable viscosity and density biofilm simulations using an immersed boundary method, Part II: Experimental validation and the heterogeneous rheology-IBM. J. Comput. Phys. 316, 204222.
[22] Wetzel, E. D. & Tucker, C. L. III (2001) Droplet deformation in dispersions with unequal viscosities and zero interfacial tension. J. Fluid Mech. 426, 199228.
[23] Yarin, A., Gottlieb, O. & Roisman, I. (1997) Chaotic rotation of triaxial ellipsoids in simple shear flow. J. Fluid Mech. 340, 83100.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed