Skip to main content
×
Home

On isotropic cloaking and interior transmission eigenvalue problems

  • XIA JI (a1) and HONGYU LIU (a2) (a3)
Abstract

This paper is concerned with the invisibility cloaking in acoustic wave scattering from a new perspective. We are especially interested in achieving the invisibility cloaking by completely regular and isotropic mediums. It is shown that an interior transmission eigenvalue problem arises in our study, which is the one considered theoretically in Cakoni et al. (Transmission eigenvalues for inhomogeneous media containing obstacles, Inverse Problems and Imaging, 6 (2012), 373–398). Based on such an observation, we propose a cloaking scheme that takes a three-layer structure including a cloaked region, a lossy layer and a cloaking shell. The target medium in the cloaked region can be arbitrary but regular, whereas the mediums in the lossy layer and the cloaking shell are both regular and isotropic. We establish that if a certain non-transparency condition is satisfied, then there exists an infinite set of incident waves such that the cloaking device is nearly invisible under the corresponding wave interrogation. The set of waves is generated from the Herglotz approximation of the associated interior transmission eigenfunctions. We provide both theoretical and numerical justifications.

Copyright
Footnotes
Hide All

The work of H. Liu was supported by the startup fund and FRG grants from Hong Kong Baptist University, Hong Kong RGC General Research Fund, 12302415, and the NSFC grant under No. 11371115. X. Ji was supported by the National Natural Science Foundation of China (No. 11271018, No. 91230203) and the Special Funds for National Basic Research Program of China, 973 Program 2012CB025904.

Footnotes
References
Hide All
[1] Alu A. & Engheta N. (2005) Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623.
[2] Ammari H., Ciraolo G., Kang H., Lee, H. & Milton G. (2013) Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. Arch. Ration. Mech. Anal. 208, 667692.
[3] Ammari H., Kang H., Lee H. & Lim M. (2013) Enhancement of near-cloaking using generalized polarization tensors vanishing structures. Part I: The conductivity problem. Comm. Math. Phys. 317, 253266.
[4] Ammari H., Kang H., Lee H. & Lim M. (2013) Enhancement of near-cloaking. Part II: The Helmholtz equation. Comm. Math. Phys. 317, 485502.
[5] Ammari H., Kang H., Lee H. & Lim M. (2013) Enhancement of near cloaking for the full Maxwell equations. SIAM J. Appl. Math. 73, 20552076.
[6] Ando K., Kang H. & Liu H. (2016) Plasmon resonance with finite frequencies: A validation of the quasi-static approximation for diametrically small inclusions. SIAM J. Appl. Math. 76 (2), 731749.
[7] Bonnet-Ben Dhia A., Chesnel L. & Nazarov S. A. (2015) Non-scattering wavenumbers and far field invisibility for a finite set of incident/scattering directions. Inverse Problems 31 (4), 045006.
[8] Bao G. & Liu H. (2014) Nearly cloaking the full Maxwell equations. SIAM J. Appl. Math. 74, 724742.
[9] Bao G., Liu H. & Zou J. (2014) Nearly cloaking the full Maxwell equations: Cloaking active contents with general conducting layers. J. Math. Pures Appl. 101 (9), 716733.
[10] Blåsten E. & Liu H. On corners scattering stably and stable shape determination by a single far-field pattern, arXiv:1611.03647.
[11] Blåsten E., Päivärinta L. & Sylvester J. (2014) Corners always scatter. Comm. Math. Phys. 331 (2), 725753.
[12] Cakoni F. & Colton D. (2014) A Qualitative Approach to Inverse Scattering Theory, Springer, New York.
[13] Cakoni F., Cossonniére A. & Haddar H. (2012) Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Problems and Imaging 6, 373398.
[14] Cakoni F., Colton D. & Gintides D. (2010) The interior transmission eigenvalue problem. SIAM J. Math. Anal. 42, 29122921.
[15] Cakoni F., Gintides D. & Haddar H. (2010) The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237255.
[16] Cakoni F. & Kirsch A. (2010) On the interior transmission eigenvalue problem. Int. J. Comput. Sci. Math. 3, 142167.
[17] Chen H. & Chan C. T. (2010) Acoustic cloaking and transformation acoustics. J. Phys. D: Appl. Phys. 43, 113001.
[18] Colton D., Kirsch A. & Päivärinta L. (1989) Far-field patterns for acoustic waves in an inhomogeneous medium. SIAM J. Math. Anal. 20, 14721483.
[19] Colton D. & Kress R. (1998) Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed., Springer-Verlag, Berlin.
[20] Colton D. & Monk P. (1988) The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium. Quart. J. Mech. Apple. Math. 41, 97125.
[21] Colton D., Monk P. & Sun J. (2010) Analytical and computational methods for transmission eigenvalues. Inverse Problems 26, 045011.
[22] Elschner J. & Hu G. (2015) Corners and edges always scatter. Inverse Problems 31 (1), 015003.
[23] Elschner J. & Hu G. Acoustic scattering from corners, edges and circular cones, arXiv:1603.05186.
[24] Greenleaf A., Kurylev Y., Lassas M., Leonhardt U. & Uhlmann G. (2012) Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics. Proc. Natl. Acad. Sci. (PNAS) 109, 1016910174.
[25] Greenleaf A., Kurylev Y., Lassas M. & Uhlmann G. (2007) Improvement of cylindrical cloaking with SHS lining. Opt. Exp. 15, 1271712734.
[26] Greenleaf A., Kurylev Y., Lassas M. & Uhlmann G. (2011) Approximate quantum and acoustic cloaking. J. Spectr. Theory 1, 2780.
[27] Greenleaf A., Kurylev Y., Lassas M. & Uhlmann G. (2008) Isotropic transformation optics: Approximate acoustic and quantum cloaking. New J. Phys. 10, 115024.
[28] Greenleaf A., Kurylev Y., Lassas M. & Uhlmann G. (2009) Invisibility and inverse prolems. Bull. A. M. S. 46, 5597.
[29] Greenleaf A., Kurylev Y., Lassas M. & Uhlmann G. (2009) Cloaking devices, electromagnetic wormholes and transformation optics. SIAM Rev. 51, 333.
[30] Greenleaf A., Lassas M. & Uhlmann G. (2003) Anisotropic conductivities that cannot be detected by EIT. Physiolog. Meas. 24, 413.
[31] Greenleaf A., Lassas M. & Uhlmann G. (2003) On nonuniqueness for Calderón's inverse problem. Math. Res. Lett. 10, 685693.
[32] Kettunen H., Lassas M. & Ola P. (2014) On absence and existence of the anomalous localized resonace without the quasi-static approximation, arXiv:1406.6224v2.
[33] Kohn R. V., Lu J., Schweizer B. & Weinstein M. I. (2014) A variational perspective on cloaking by anomalous localized resonance. Comm. Math. Phys. 328, 127.
[34] Kohn R., Onofrei O., Vogelius M. & Weinstein M. (2010) Cloaking via change of variables for the Helmholtz equation. Comm. Pure Appl. Math. 63, 9731016.
[35] Kirsch A. (2009) On the existence of transmission eigenvalues. Inverse Probl. Imaging 3, 155172.
[36] Kirsch A. & Päivärinta L. (1998) On recovering obstacles inside inhomogeneities. Math. Methods Appl. Sci. 21 (7), 619651.
[37] Leonhardt U. (2006) Optical conformal mapping. Science 312, 17771780.
[38] Li H., Li J. & Liu H. (2015) On quasi-static cloaking due to anomalous localized resonance in ℝ3. SIAM J. Appl. Math. 75, 12451260.
[39] Li J., Liu H., Rondi L. & Uhlmann G. (2015) Regularized transformation-optics cloaking for the Helmholtz equation: From partial cloak to full cloak. Comm. Math. Phys. 335, 671712.
[40] Liu H. (2009) Virtual reshaping and invisibility in obstacle scattering. Inverse Problems 25, 045006.
[41] Liu H. (2013) On near-cloak in acoustic scattering. J. Differ. Equ. 254, 12301246.
[42] Liu H. & Sun H., (20) Enhanced near-cloak by FSH lining. J. Math. Pures Appl. 99 (9), 1742.
[43] McLean W. (2000) Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge.
[44] Milton G. W. & Nicorovici N.-A. P. (2006) On the cloaking effects associated with anomalous localized resonance. Proc. Roy. Soc. Lond. A 462, 30273095.
[45] Nédélec J. C. (2001) Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Springer-Verlag, New York.
[46] Norris A. N. (2008) Acoustic cloaking theory. Proc. R. Soc. Lond. A 464, 24112434.
[47] Päivärinta L. & Sylvester J., (2008) Transmission eigenvalues. SIAM J. Math. Anal. 40, 738753.
[48] Pendry J. B., Schurig D. & Smith D. R. (2006) Controlling electromagnetic fields. Science 312, 17801782.
[49] Sun J. (2011) Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49, 18601874.
[50] Uhlmann G. (2009) Visibility and invisibility. In: ICIAM 07–6th International Congress on Industrial and Applied Mathematics, Eur. Math. Soc., Zürich, pp. 381–408.
[51] Weck N. (2004) Approximation by Herglotz wave functions. Math. Methods Appl. Sci. 27, 155162.
[52] Wloka J. (1987) Partial Dierential Equations, Cambridge University Press, Cambridge.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 137 *
Loading metrics...

* Views captured on Cambridge Core between 22nd May 2017 - 24th November 2017. This data will be updated every 24 hours.