Skip to main content
×
×
Home

Scaling laws and warning signs for bifurcations of SPDEs

  • CHRISTIAN KUEHN (a1) and FRANCESCO ROMANO (a1) (a2)
Abstract

Critical transitions (or tipping points) are drastic sudden changes observed in many dynamical systems. Large classes of critical transitions are associated with systems, which drift slowly towards a bifurcation point. In the context of stochastic ordinary differential equations, there are results on growth of variance and autocorrelation before a transition, which can be used as possible warning signs in applications. A similar theory has recently been developed in the simplest setting for stochastic partial differential equations (SPDEs) for self-adjoint operators in the drift term. This setting leads to real discrete spectrum and growth of the covariance operator via a certain scaling law. In this paper, we develop this theory substantially further. We cover the cases of complex eigenvalues, degenerate eigenvalues as well as continuous spectrum. This provides a fairly comprehensive theory for most practical applications of warning signs for SPDE bifurcations.

Copyright
References
Hide All
[1]Berglund, N. & Gentz, B. (2002) Pathwise description of dynamic pitchfork bifurcations with additive noise. Probab. Theory Relat. Fields 3, 341388.
[2]Berglund, N. & Gentz, B. (2006) Noise-Induced Phenomena in Slow-Fast Dynamical Systems, Springer London Ltd.
[3]Blömker, D. (2007) Amplitude Equations for Stochastic Partial Differential Equations, World Scientific Publishing Co. Pte. Ltd.
[4]Boettinger, C. & Hastings, A. (2012) Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9(75), 25272539.
[5]Carpenter, S. R. & Brock, W. A. (2006) Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311318.
[6]Carpenter, S. R., Cole, J. J., Pace, M. L., Batt, R., Brock, W. A., Cline, T., Coloso, J., Hodgson, J. R., Kitchell, J. F., Seekell, D. A., Smith, L. & Weidel, B. (2011) Early warning signs of regime shifts: a whole-ecosystem experiment. Science 332, 10791082.
[7]Chen, Y., Kolokolnikov, T., Tzou, J. & Gai, C. (2015) Patterned vegetation, tipping points, and the rate of climate change. Eur. J. Appl. Math. 26(6), 945958.
[8]Cotilla-Sanchez, E., Hines, P. & Danforth, C. M. (2012) Predicting critical transitions from time series synchrophasor data. IEEE Trans. Smart Grid 3(4), 18321840.
[9]Da Prato, G. (2004) Kolmogorov Equations for Stochastic PDEs, Birkhäuser Basel.
[10]Da Prato, G. & Zabczyk, J. (1992) Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK.
[11]Dakos, V., van Nes, E. H., Donangelo, R., Fort, H. & Scheffer, M. (2009) Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3(3), 163174.
[12]Ditlevsen, P. D. & Johnsen, S. J. (2010) Tipping points: early warning and wishful thinking. Geophys. Res. Lett. 37, 19703.
[13]Donangelo, R., Fort, H., Dakos, V., Scheffer, M. & Van Nes, E. H. (2010) Early warnings for catastrophic shifts in ecosystems: comparison between spatial and temporal indicators. Int. J. Bif. Chaos 20(2), 315321.
[14]Engel, K.-J. & Nagel, R. (2000) Semigroups for Linear Evolution Equations, Springer.
[15]Gowda, K. & Kuehn, C. (2015) Warning signs for pattern-formation in SPDEs. Comm. Nonl. Sci. Numer. Simul. 22(1), 5569.
[16]Guckenheimer, J. & Holmes, P. (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, NY.
[17]Hohenberg, P. C. & Halperin, B. I. (1977) Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435.
[18]Hoyle, R. (2006) Pattern Formation: An Introduction to Methods, Cambridge University Press, Cambridge, UK.
[19]Huang, Y., Kou, G. & Peng, Y. (2017) Nonlinear manifold learning for early warnings in financial markets. Eur. J. Oper. Res. 258(2), 692702.
[20]Kielhoefer, H. (2004) Bifurcation Theory: An Introduction with Applications to PDEs, Springer-Verlag New York.
[21]Kirrmann, P., Schneider, G. & Mielke, A. (1992) The validity of modulation equations for extended systems with cubic nonlinearities. Proc. R. Soc. Edinburgh A 122(1), 8591.
[22]Kramer, J. & Ross, J. (1985) Stabilization of unstable states, relaxation, and critical slowing down in a bistable system. J. Chem. Phys. 83(12), 62346241.
[23]Kuehn, C. (2013) A mathematical framework for critical transitions: normal forms, variance and applications. J. Nonlinear Sci. 23(3), 457510.
[24]Kuehn, C. (2013) Warning signs for wave speed transitions of noisy Fisher-KPP invasion fronts. Theor. Ecol. 6(3), 295308.
[25]Kuehn, C. (2015) The curse of instability. Complexity 20(6), 914.
[26]Kuehn, C. (2015) Multiple Time Scale Dynamics, Springer International Publishing Switzerland, 814 p.
[27]Kuehn, C. (2015) Numerical continuation and SPDE stability for the 2d cubic-quintic Allen-Cahn equation. SIAM/ASA J. Uncertain. Quantif. 3(1), 762789.
[28]Kuehn, C., Zschaler, G. & Gross, T. (2015) Early warning signs for saddle-escape transitions in complex networks. Sci. Rep. 5, 13190.
[29]Kwasniok, F. (2018) Detecting, anticipating, and predicting critical transitions in spatially extended systems. Chaos 28(3), 033614.
[30]Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S. & Schellnhuber, H. J. (2008) Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA 105(6), 17861793.
[31]May, R., Levin, S. A. & Sugihara, G. (2008) Ecology for bankers. Nature 451, 893895.
[32]McSharry, P. E., Smith, L. A. & Tarassenko, L. (2003) Prediction of epileptic seizures. Nat. Med. 9, 241242.
[33]Mormann, F., Andrzejak, R. G., Elger, C. E. & Lehnertz, K. (2007) Seizure prediction: the long and winding road. Brain 130, 314333.
[34]O’Regan, S. M. & Drake, J. M. (2013) Theory of early warning signals of disease emergence and leading indicators of elimination. Theor. Ecol. 6(3), 333357.
[35]Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York.
[36]Reed, M. & Simon, B. (1980) Methods of Modern Mathematical Physics I. Functional Analysis, Academic Press Inc, London Ltd.
[37]Sankaran, S., Majumder, S., Kéfi, S. & Guttal, V. (2018) Implications of being discrete and spatial for detecting early warning signals of regime shifts. Ecol. Indic. 94(1), 503511.
[38]Scheffer, M., Bascompte, J., Brock, W. A., Brovkhin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M. & Sugihara, G. (2009) Early-warning signals for critical transitions. Nature 461, 5359.
[39]Schmüdgen, K. (2012) Unbounded Self-adjoint Operators on Hilbert Space, Springer Netherlands.
[40]van Belzen, J., van de Koppel, J., Kirwan, M. L., van der Wal, D., Herman, P. M., Dakos, V., Kéfi, S., Scheffer, M., Guntenspergen, G. R. & Bouma, T. J. (2017) Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nat. Comm. 8, 15811.
[41]Venegas, J. G., Winkler, T., Musch, G., Vidal Melo, M. F., Layfield, D., Tgavalekos, N., Fischman, A. J., Callahan, R. J., Bellani, G. & Harris, R. S. (2005) Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 434, 777782.
[42]Wiesenfeld, K. (1985) Noisy precursors of nonlinear instabilities. J. Stat. Phys. 38(5), 10711097.
[43]Zhang, X., Hallerberg, S. & Kuehn, C. (2015) Predictability of critical transitions. Phys. Rev. E 92, 052905.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed