Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T16:04:27.129Z Has data issue: false hasContentIssue false

Steady states and dynamics of a thin-film-type equation with non-conserved mass

Published online by Cambridge University Press:  22 November 2019

HANGJIE JI
Affiliation:
Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA email: hangjie@math.ucla.edu
THOMAS P. WITELSKI
Affiliation:
Department of Mathematics, Duke University, Durham, NC 27708-0320, USA email: witelski@math.duke.edu

Abstract

We study the steady states and dynamics of a thin-film-type equation with non-conserved mass in one dimension. The evolution equation is a non-linear fourth-order degenerate parabolic partial differential equation (PDE) motivated by a model of volatile viscous fluid films allowing for condensation or evaporation. We show that by changing the sign of the non-conserved flux and breaking from a gradient flow structure, the problem can exhibit novel behaviours including having two distinct classes of co-existing steady-state solutions. Detailed analysis of the bifurcation structure for these steady states and their stability reveals several possibilities for the dynamics. For some parameter regimes, solutions can lead to finite-time rupture singularities. Interestingly, we also show that a finite-amplitude limit cycle can occur as a singular perturbation in the nearly conserved limit.

Type
Papers
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajaev, V. S. (2005) Evolution of dry patches in evaporating liquid films. Phys. Rev. E 72(3), 031605.CrossRefGoogle ScholarPubMed
Ajaev, V. S. (2005) Spreading of thin volatile liquid droplets on uniformly heated surfaces. J. Fluid Mech. 528, 279296.CrossRefGoogle Scholar
Ajaev, V. S. & Homsy, G. M. (2001) Steady vapor bubbles in rectangular microchannels. J. Colloid Interface Sci. 240(1), 259271.CrossRefGoogle ScholarPubMed
Bernoff, A. J., Bertozzi, A. L. & Witelski, T. P. (1998) Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff. J. Stat. Phys. 93(3), 725776.CrossRefGoogle Scholar
Bertozzi, A. L., Grün, G. & Witelski, T. P. (2001) Dewetting films: bifurcations and concentrations. Nonlinearity 14(6), 1569.CrossRefGoogle Scholar
Bertozzi, A. L. & Pugh, M. C. (1994) The lubrication approximation for thin viscous films: the moving contact line with a ‘porous media’ cut-off of van der Waals interactions. Nonlinearity 7(6), 1535.CrossRefGoogle Scholar
Bestehorn, M. & Merkt, D. (2006) Regular surface patterns on Rayleigh-Taylor unstable evaporating films heated from below. Phys. Rev. Lett. 97(12), 127802.CrossRefGoogle ScholarPubMed
Burelbach, J. P., Bankoff, S. G. & Davis, S. H. (1988) Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech. 195, 463494.CrossRefGoogle Scholar
Chen, L.-Q. (2002) Phase-field models for microstructure evolution. Ann. Rev. Mater. Res. 32, 113140.Google Scholar
Chicone, C. (2006) Ordinary Differential Equations with Applications, vol. 34, Texts in Applied Mathematics. 2nd edn. Springer, New York.Google Scholar
Craster, R. V. & Matar, O. K. (2009) Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81(3), 1131.CrossRefGoogle Scholar
Cross, M. & Greenside, H. (2009) Pattern Formation and Dynamics in Nonequilibrium Systems. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Dai, S. & Du, Q. (2016) Weak solutions for the Cahn-Hilliard equation with degenerate mobility. Arch. Ration. Mech. Anal. 219(3), 11611184.CrossRefGoogle Scholar
De Gennes, P.-G. (1985) Wetting: statics and dynamics. Rev. Mod. Phys. 57(3), 827.CrossRefGoogle Scholar
Eggers, J. & Fontelos, M. A. (2015). Singularities: Formation, Structure, and Propagation. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Elliott, C. M. & Garcke, H. (1996) On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404423.CrossRefGoogle Scholar
Engelnkemper, S., Gurevich, S. V., Uecker, H., Wetzel, D. & Thiele, U. (2019). Continuation for thin film hydrodynamics and related scalar problems. In: Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, Springer, pp. 459501.CrossRefGoogle Scholar
Fife, P. (2000) Models for phase separation and their mathematics. Electron. J. Diff. Eq. 2000(48), 126.Google Scholar
Galaktionov, V. A. (2010) Very Singular solutions for thin film equations with absorption. Stud. Appl. Math. 124(1), 3963.CrossRefGoogle Scholar
Galaktionov, V. A. & Harwin, P. J. (2009) On center subspace behavior in thin film equations. SIAM J. Appl. Math. 69(5), 13341358.CrossRefGoogle Scholar
Garcke, H. & Lam, K. F. (2017). Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport. Eur. J. Appl. Math. 28(2), 284316.CrossRefGoogle Scholar
Glasner, K. (2003). Spreading of droplets under the influence of intermolecular forces. Phys. Fluids 15(7), 18371842 (2003).CrossRefGoogle Scholar
Glasner, K. B. & Witelski, T. P. (2003) Coarsening dynamics of dewetting films. Phys. Rev. E 67(1), 016302.CrossRefGoogle ScholarPubMed
Grant, C. P. (1993) Spinodal decomposition for the Cahn-Hilliard equation. Commun. Part. Diff. Eq. 18(3–4), 453490.CrossRefGoogle Scholar
Iakubovich, V. A. & Starzhinskiĭ, V. M. (1975) Linear Differential Equations with Periodic Coefficients, vol. 2. Wiley.Google Scholar
Israel, H. (2013) Well-posedness and long time behavior of an Allen–Cahn-type equation. Commun. Pure & Appl. Anal. 12(6) (2013).Google Scholar
Israel, H., Miranville, A. & Petcu, M. (2013). Well-posedness and long time behavior of a perturbed Cahn–Hilliard system with regular potentials. Asymptotic Anal. 84(3–4), 147179.CrossRefGoogle Scholar
Ji, H. (2017) Thin Films With Non-Conservative Effects. PhD thesis, Duke University.Google Scholar
Ji, H. & Witelski, T. P. (2017) Finite-time thin film rupture driven by modified evaporative loss. Physica D 342, 115.CrossRefGoogle Scholar
Ji, H. & Witelski, T. P. (2018). Instability and dynamics of volatile thin films. Phys. Rev. Fluids 3(2), 024001.CrossRefGoogle Scholar
Karali, G. & Katsoulakis, M. A. (2007). The role of multiple microscopic mechanisms in cluster interface evolution. J. Diff. Eq. 235(2), 418438.CrossRefGoogle Scholar
Karali, G. & Ricciardi, T. (2010) On the convergence of a fourth order evolution equation to the Allen-Cahn equation. Nonlinear Anal. 72(11), 42714281.CrossRefGoogle Scholar
Karali, G. D. & Nagase, Y. (2014) On the existence of solution for a Cahn-Hilliard/Allen–Cahn equation. Disc. Cont. Dyn.-S. 7(1), 127137.Google Scholar
Korzec, M. D., Evans, P. L., Münch, A. & Wagner, B. (2008) Stationary solutions of driven fourth- and sixth-order Cahn-Hilliard-type equations. SIAM J. Appl. Math. 69(2), 348374.CrossRefGoogle Scholar
Kuznetsov, Y. A. (2004) Elements of Applied Bifurcation Theory, vol. 112. Applied Mathematical Sciences, 3rd edn. Springer-Verlag, New York.CrossRefGoogle Scholar
Laugesen, R. S. & Pugh, M. C. (2000) Linear stability of steady states for thin film and Cahn-Hilliard type equations. Arch. Ration. Mech. Anal. 154(1), 351.CrossRefGoogle Scholar
Laugesen, R. S. & Pugh, M. C. (2000) Properties of steady states for thin film equations. Eur. J. Appl. Math. 11(03), 293351.CrossRefGoogle Scholar
Laugesen, R. S. & Pugh, M. C. (2002) Energy levels of steady states for thin-film-type equations. J. Diff. Eq. 182(2), 377415.CrossRefGoogle Scholar
Lyushnin, A. V., Golovin, A. A. & Pismen, L. M. (2002) Fingering instability of thin evaporating liquid films. Phys. Rev. E 65(2), 021602.CrossRefGoogle ScholarPubMed
Miranville, A. (2017) The Cahn–Hilliard equation and some of its variants. AIMS Math. 2(3), 479544.CrossRefGoogle Scholar
Mitlin, V. S. (1993) Dewetting of solid surface: Analogy with spinodal decomposition. J. Colloid Interface Sci. 156, 491497.CrossRefGoogle Scholar
Moosman, S. & Homsy, G. M. (1980) Evaporating menisci of wetting fluids. J. Colloid Interface Sci. 73(1), 212223.CrossRefGoogle Scholar
Münch, A. (2005) Dewetting rates of thin liquid films. J. Phys. Condens. Matter 17(9), S309.CrossRefGoogle Scholar
Münch, A., Wagner, B. A. & Witelski, T. P. (2005) Lubrication models with small to large slip lengths. J. Eng. Math. 53(3–4), 359383.CrossRefGoogle Scholar
Murdock, J. A. (1999) Perturbations: Theory and methods, vol. 27. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.CrossRefGoogle Scholar
Myers, T. G. (1998) Thin films with high surface tension. SIAM Rev. 40(3), 441462.CrossRefGoogle Scholar
Novick-Cohen, A. (1988) Energy methods for the Cahn-Hilliard equation. Quart. Appl. Math. 46(4), 681690.CrossRefGoogle Scholar
Novick-Cohen, A. & Segel, L. A. (1984). Nonlinear aspects of the Cahn-Hilliard equation. Physica D 10(3), 277298.CrossRefGoogle Scholar
Novick-Cohen, A. & Shishkov, A. (2010) The thin film equation with backwards second order diffusion. Interfaces Free Bound. 12, 463496.CrossRefGoogle Scholar
Ockendon, J. R. & Ockendon, H. (1995) Viscous Flow. Cambridge University, Cambridge.CrossRefGoogle Scholar
Oron, A. & Bankoff, S. G. (1999). Dewetting of a heated surface by an evaporating liquid film under conjoining/disjoining pressures. J. Colloid Interface Sci. 218(1), 152166.CrossRefGoogle ScholarPubMed
Oron, A. & Bankoff, S. G. (2001) Dynamics of a condensing liquid film under conjoining/disjoining pressures. Phys. Fluids 13(5), 11071117.CrossRefGoogle Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. (1997) Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931.CrossRefGoogle Scholar
Peletier, L. A. & Troy, W. C. (2001) Spatial patterns: Higher order models in physics and mechanics, vol. 45. Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (2001).Google Scholar
Perazzo, C. A., Mac, I., J. R. & Gomba, J. M. (2017) Analytical solutions for the profile of two-dimensional droplets with finite-length precursor films. Phys. Rev. E 96(6), 063109.CrossRefGoogle ScholarPubMed
Taranets, R. M. & King, J. R. (2014) On an unstable thin-film equation in multi-dimensional domains. Nonlinear Differential Equations and Applications 21(1), 105128.CrossRefGoogle Scholar
Taranets, R. M. & Shishkov, A. E. (2003) The effect of time delay of support propagation in equations of thin films. Ukraïn. Mat. Zh. 55(7), 935952.Google Scholar
Teletzke, G. F., Davis, H. T. & Scriven, L. E. (1988) Wetting hydrodynamics. Revue de Physique Appliquee 23(6), 9891007.CrossRefGoogle Scholar
Teschl, G. (2012) Ordinary Differential Equations and Dynamical Systems. American Mathematical Soc. CrossRefGoogle Scholar
Thiele, U. (2010) Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth. J. Phys. Condens. Matter 22(8), 084019.CrossRefGoogle ScholarPubMed
Thiele, U. (2014) Patterned deposition at moving contact lines. Adv. Colloid Interface Sci. 206, 399413.CrossRefGoogle ScholarPubMed
Thiele, U. (2018) Recent advances in and future challenges for mesoscopic hydrodynamic modelling of complex wetting. Colloids Surf. A 553, 487495.CrossRefGoogle Scholar
Thiele, U., Archer, A. J. & Pismen, L. M. (2016). Gradient dynamics models for liquid films with soluble surfactant. Phys. Rev. Fluids 1(083903), 131.CrossRefGoogle Scholar
Todorova, D., Thiele, U. & Pismen, L. M. (2012). The relation of steady evaporating drops fed by an influx and freely evaporating drops. J. Eng. Math. 73(1), 1730.CrossRefGoogle Scholar
Witelski, T. P. & Bernoff, A. J. (2000) Dynamics of three-dimensional thin film rupture. Physica D 147(1), 155176.CrossRefGoogle Scholar
Zhang, X. & Liu, C. (2016) Existence of solutions to the Cahn-Hilliard/Allen–Cahn equation with degenerate mobility. Electron. J. Diff. Eq. 2016(329), 122.Google Scholar