Skip to main content
×
Home

A FORMAL PROOF OF THE KEPLER CONJECTURE

  • THOMAS HALES (a1), MARK ADAMS (a2) (a3), GERTRUD BAUER (a4), TAT DAT DANG (a5), JOHN HARRISON (a6), LE TRUONG HOANG (a7), CEZARY KALISZYK (a8), VICTOR MAGRON (a9), SEAN MCLAUGHLIN (a10), TAT THANG NGUYEN (a7), QUANG TRUONG NGUYEN (a1), TOBIAS NIPKOW (a11), STEVEN OBUA (a12), JOSEPH PLESO (a13), JASON RUTE (a14), ALEXEY SOLOVYEV (a15), THI HOAI AN TA (a7), NAM TRUNG TRAN (a7), THI DIEP TRIEU (a16), JOSEF URBAN (a17), KY VU (a18) and ROLAND ZUMKELLER (a19)...
Abstract

This article describes a formal proof of the Kepler conjecture on dense sphere packings in a combination of the HOL Light and Isabelle proof assistants. This paper constitutes the official published account of the now completed Flyspeck project.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A FORMAL PROOF OF THE KEPLER CONJECTURE
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      A FORMAL PROOF OF THE KEPLER CONJECTURE
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      A FORMAL PROOF OF THE KEPLER CONJECTURE
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
[1] Adams M., ‘Introducing HOL Zero’, inMathematical Software–ICMS 2010 (Springer, 2010), 142143.
[2] Adams M., ‘Flyspecking Flyspeck’, inMathematical Software–ICMS 2014 (Springer, 2014), 1620.
[3] Adams M. and Aspinall D., ‘Recording and refactoring HOL Light tactic proofs’, inProceedings of the IJCAR Workshop on Automated Theory Exploration (2012).
[4] Bauer G., ‘Formalizing plane graph theory – towards a formalized proof of the Kepler conjecture’. PhD Thesis, Technische Universität München, 2006. http://mediatum.ub.tum.de/doc/601794/document.pdf.
[5] Bauer G. and Nipkow T., ‘Flyspeck I: Tame graphs’, inThe Archive of Formal Proofs (eds. Klein G., Nipkow T. and Paulson L.) http://afp.sf.net/entries/Flyspeck-Tame.shtml, May 2006. Formal proof development.
[6] Fejes Tóth L., Lagerungen in der Ebene auf der Kugel und im Raum, 1st edn, (Springer, Berlin–New York, 1953).
[7] Flyspeck, The Flyspeck Project, 2014. https://github.com/flyspeck/flyspeck.
[8] GLPK, GLPK (GNU Linear Programming Kit). http://www.gnu.org/software/glpk/.
[9] Gonthier G., Asperti A., Avigad J., Bertot Y., Cohen C., Garillot F., Le Roux S., Mahboubi A., O’Connor R. and Biha S. O. et al. , ‘A machine-checked proof of the odd order theorem’, inInteractive Theorem Proving (Springer, 2013), 163179.
[10] Gordon M., Milner R. and Wadsworth C., Edinburgh LCF: A Mechanized Logic of Computation, Lecture Notes in Computer Science, 78 (1979).
[11] Gordon M. J. C. and Melham T. F., Introduction to HOL: a Theorem Proving Environment for Higher Order Logic (Cambridge University Press, 1993).
[12] Haftmann F. and Nipkow T., ‘Code generation via higher-order rewrite systems’, inFunctional and Logic Programming, 10th International Symposium, FLOPS 2010, Sendai, Japan, April 19–21, 2010. Proceedings (Springer, 2010), 103117. https://dx.doi.org/10.1007/978-3-642-12251-4_9.
[13] Hales T., Developments in formal proofs. Bourbaki Seminar, 2013/2014 (1086):1086-1-23, 2014.
[14] Hales T. C., ‘A proof of the Kepler conjecture’, Ann. of Math. (2) 162 (2005), 10631183.
[15] Hales T. C., ‘Introduction to the Flyspeck Project’, inMathematics, Algorithms, Proofs (eds. Coquand T., Lombardi H. and Roy M.-F.) Dagstuhl Seminar Proceedings, Dagstuhl, Germany, number 05021 (Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2006), http://drops.dagstuhl.de/opus/volltexte/2006/432.
[16] Hales T. C., ‘The strong dodecahedral conjecture and Fejes Tóth’s contact conjecture’, Technical Report, 2011.
[17] Hales T. C., Dense Sphere Packings: a Blueprint for Formal Proofs, London Mathematical Society Lecture Note Series, 400 (Cambridge University Press, 2012).
[18] Hales T. C. and Ferguson S. P., ‘The Kepler conjecture’, Discrete Comput. Geom. 36(1) (2006), 1269.
[19] Hales T. C., Harrison J., McLaughlin S., Nipkow T., Obua S. and Zumkeller R., ‘A revision of the proof of the Kepler Conjecture’, Discrete Comput. Geom. 44(1) (2010), 134.
[20] Harrison J., ‘Towards self-verification of HOL Light’, inAutomated Reasoning, Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17–20, 2006, Proceedings (eds. Furbach U. and Shankar N.) Lecture Notes in Computer Science, 4130 (Springer, 2006), 177191. ISBN 3-540-37187-7. https://dx.doi.org/10.1007/11814771_17.
[21] Harrison J., ‘Without loss of generality’, inProceedings of the 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009 (eds. Berghofer S., Nipkow T., Urban C. and Wenzel M.) Lecture Notes in Computer Science, 5674 (Springer, Munich, Germany, 2009), 4359.
[22] Harrison J., ‘HOL Light: An overview’, inTheorem Proving in Higher Order Logics (Springer, 2009), 6066.
[23] Harrison J., The HOL Light theorem prover, 2014. http://www.cl.cam.ac.uk/∼jrh13/hol-light/index.html.
[24] Kaliszyk C. and Krauss A., ‘Scalable LCF-style proof translation’, inProc. of the 4th International Conference on Interactive Theorem Proving (ITP’13) (eds. Blazy S., Paulin-Mohring C. and Pichardie D.) Lecture Notes in Computer Science, 7998 (Springer, 2013), 5166.
[25] Kaliszyk C. and Urban J., ‘Learning-assisted automated reasoning with Flyspeck’, J. Automat. Reason. 53(2) (2014), 173213. https://dx.doi.org/10.1007/s10817-014-9303-3.
[26] Kaliszyk C. and Urban J., ‘Learning-assisted theorem proving with millions of lemmas’, J. Symbolic Comput. 69(0) (2014), 109128. ISSN 0747-7171. doi:10.1016/j.jsc.2014.09.032. URL http://www.sciencedirect.com/science/article/pii/S074771711400100X.
[27] Kepler J., Strena seu de nive sexangula (Gottfried. Tampach, Frankfurt, 1611).
[28] Klein G., Elphinstone K., Heiser G., Andronick J., Cock D., Derrin P., Elkaduwe D., Engelhardt K., Kolanski R., Norrish M., Sewell T., Tuch H. and Winwood S., ‘seL4: formal verification of an OS kernel’, inProc. 22nd ACM Symposium on Operating Systems Principles 2009 (eds. Matthews J. N. and Anderson T. E.) (ACM, 2009), 207220.
[29] Kumar R., Arthan R., Myreen M. O. and Owens S., ‘HOL with definitions: semantics, soundness, and a verified implementation’, inInteractive Theorem Proving – 5th International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14–17, 2014. Proceedings (eds. Klein G. and Gamboa R.) Lecture Notes in Computer Science, 8558 (Springer, 2014), 308324. ISBN 978-3-319-08969-0.https://dx.doi.org/10.1007/978-3-319-08970-6_20.
[30] Lagarias J., The Kepler Conjecture and its Proof (Springer, 2009), 326.
[31] Leroy X., ‘Formal certification of a compiler back-end, or: programming a compiler with a proof assistant’, inACM SIGPLAN Notices 41, (2006), 4254. http://compcert.inria.fr/.
[32] Magron V., ‘Formal proofs for global optimization – templates and sums of squares’. PhD Thesis, École Polytechnique, 2013.
[33] Marchal C., ‘Study of the Kepler’s conjecture: the problem of the closest packing’, Math. Z. 267(3–4) (2011), 737765. ISSN 0025-5874. https://dx.doi.org/10.1007/s00209-009-0644-2.
[34] McLaughlin S., ‘An interpretation of Isabelle/HOL in HOL Light’, inIJCAR (eds. Furbach U. and Shankar N.) Lecture Notes in Computer Science, 4130 (Springer, 2006), 192204.
[35] Moore R. E., Kearfott R. B. and Cloud M. J., Introduction to Interval Analysis (SIAM, 2009).
[36] Nipkow T., ‘Verified efficient enumeration of plane graphs modulo isomorphism’, inInteractive Theorem Proving (ITP 2011) (eds. Van Eekelen M., Geuvers H., Schmaltz J. and Wiedijk F.) Lecture Notes in Computer Science, 6898 (Springer, 2011), 281296.
[37] Nipkow T., Paulson L. and Wenzel M., Isabelle/HOL – A Proof Assistant for Higher-Order Logic, Lecture Notes in Computer Science, 2283 (Springer, 2002), http://www.in.tum.de/∼nipkow/LNCS2283/.
[38] Nipkow T., Bauer G. and Schultz P., ‘Flyspeck I: Tame graphs’, inAutomated Reasoning (IJCAR 2006) (eds. Furbach U. and Shankar N.) Lecture Notes in Computer Science, 4130 (Springer, 2006), 2135.
[39] Obua S., ‘Proving bounds for real linear programs in Isabelle/HOL’, inTheorem Proving in Higher Order Logics (eds. Hurd J. and Melham T. F.) Lecture Notes in Computer Science, 3603 (Springer, 2005), 227244.
[40] Obua S., ‘Flyspeck II: the basic linear programs’. PhD Thesis, Technische Universität München, 2008.
[41] Obua S. and Nipkow T., ‘Flyspeck II: the basic linear programs’, Ann. Math. Artif. Intell. 56(3–4) (2009).
[42] Obua S. and Skalberg S., ‘Importing HOL into Isabelle/HOL’, inAutomated Reasoning, Lecture Notes in Computer Science, 4130 (Springer, 2006), 298302.
[43] Solovyev A., ‘Formal methods and computations’. PhD Thesis, University of Pittsburgh, 2012. http://d-scholarship.pitt.edu/16721/.
[44] Solovyev A. and Hales T. C., Efficient Formal Verification of Bounds of Linear Programs, Lecture Notes in Computer Science, 6824 (Springer, 2011), 123132.
[45] Solovyev A. and Hales T. C., ‘Formal verification of nonlinear inequalities with Taylor interval approximations’, inNFM, Lecture Notes in Computer Science, 7871 (Springer, 2013), 383397.
[46] Tange O., ‘GNU parallel – the command-line power tool’, USENIX Mag. 36(1) (2011), 4247. URL http://www.gnu.org/s/parallel.
[47] Tankink C., Kaliszyk C., Urban J. and Geuvers H., ‘Formal mathematics on display: A wiki for Flyspeck’, inMKM/Calculemus/DML (eds. Carette J., Aspinall D., Lange C., Sojka P. and Windsteiger W.) Lecture Notes in Computer Science, 7961 (Springer, 2013), 152167. ISBN 978-3-642-39319-8.
[48] Zumkeller R., ‘Global optimization in type theory’. PhD Thesis, École Polytechnique Paris, 2008.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Forum of Mathematics, Pi
  • ISSN: -
  • EISSN: 2050-5086
  • URL: /core/journals/forum-of-mathematics-pi
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 61
Total number of PDF views: 6521 *
Loading metrics...

Abstract views

Total abstract views: 11576 *
Loading metrics...

* Views captured on Cambridge Core between 29th May 2017 - 18th November 2017. This data will be updated every 24 hours.