Skip to main content
×
Home
    • Aa
    • Aa

A FORMAL PROOF OF THE KEPLER CONJECTURE

  • THOMAS HALES (a1), MARK ADAMS (a2) (a3), GERTRUD BAUER (a4), TAT DAT DANG (a5), JOHN HARRISON (a6), LE TRUONG HOANG (a7), CEZARY KALISZYK (a8), VICTOR MAGRON (a9), SEAN MCLAUGHLIN (a10), TAT THANG NGUYEN (a7), QUANG TRUONG NGUYEN (a1), TOBIAS NIPKOW (a11), STEVEN OBUA (a12), JOSEPH PLESO (a13), JASON RUTE (a14), ALEXEY SOLOVYEV (a15), THI HOAI AN TA (a7), NAM TRUNG TRAN (a7), THI DIEP TRIEU (a16), JOSEF URBAN (a17), KY VU (a18) and ROLAND ZUMKELLER (a19)...
Abstract

This article describes a formal proof of the Kepler conjecture on dense sphere packings in a combination of the HOL Light and Isabelle proof assistants. This paper constitutes the official published account of the now completed Flyspeck project.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A FORMAL PROOF OF THE KEPLER CONJECTURE
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      A FORMAL PROOF OF THE KEPLER CONJECTURE
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      A FORMAL PROOF OF THE KEPLER CONJECTURE
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. Adams , ‘Introducing HOL Zero’, inMathematical Software–ICMS 2010 (Springer, 2010), 142143.

L. Fejes Tóth , Lagerungen in der Ebene auf der Kugel und im Raum, 1st edn, (Springer, Berlin–New York, 1953).

G. Gonthier , A. Asperti , J. Avigad , Y. Bertot , C. Cohen , F. Garillot , S. Le Roux , A. Mahboubi , R. O’Connor  and S. O. Biha , ‘A machine-checked proof of the odd order theorem’, inInteractive Theorem Proving (Springer, 2013), 163179.

M. Gordon , R. Milner  and C. Wadsworth , Edinburgh LCF: A Mechanized Logic of Computation, Lecture Notes in Computer Science, 78 (1979).

T. C. Hales , ‘A proof of the Kepler conjecture’, Ann. of Math. (2) 162 (2005), 10631183.

T. C. Hales , Dense Sphere Packings: a Blueprint for Formal Proofs, London Mathematical Society Lecture Note Series, 400 (Cambridge University Press, 2012).

T. C. Hales  and S. P. Ferguson , ‘The Kepler conjecture’, Discrete Comput. Geom. 36(1) (2006), 1269.

T. C. Hales , J. Harrison , S. McLaughlin , T. Nipkow , S. Obua  and R. Zumkeller , ‘A revision of the proof of the Kepler Conjecture’, Discrete Comput. Geom. 44(1) (2010), 134.

J. Harrison , ‘HOL Light: An overview’, inTheorem Proving in Higher Order Logics (Springer, 2009), 6066.

C. Kaliszyk  and A. Krauss , ‘Scalable LCF-style proof translation’, inProc. of the 4th International Conference on Interactive Theorem Proving (ITP’13) (eds. S. Blazy , C. Paulin-Mohring  and D. Pichardie ) Lecture Notes in Computer Science, 7998 (Springer, 2013), 5166.

C. Kaliszyk  and J. Urban , ‘Learning-assisted automated reasoning with Flyspeck’, J. Automat. Reason. 53(2) (2014), 173213. https://dx.doi.org/10.1007/s10817-014-9303-3.

C. Kaliszyk  and J. Urban , ‘Learning-assisted theorem proving with millions of lemmas’, J. Symbolic Comput. 69(0) (2014), 109128. ISSN 0747-7171. doi:10.1016/j.jsc.2014.09.032. URL http://www.sciencedirect.com/science/article/pii/S074771711400100X.

X. Leroy , ‘Formal certification of a compiler back-end, or: programming a compiler with a proof assistant’, inACM SIGPLAN Notices 41, (2006), 4254. http://compcert.inria.fr/.

C. Marchal , ‘Study of the Kepler’s conjecture: the problem of the closest packing’, Math. Z. 267(3–4) (2011), 737765. ISSN 0025-5874. https://dx.doi.org/10.1007/s00209-009-0644-2.

R. E. Moore , R. B. Kearfott  and M. J. Cloud , Introduction to Interval Analysis (SIAM, 2009).

T. Nipkow , ‘Verified efficient enumeration of plane graphs modulo isomorphism’, inInteractive Theorem Proving (ITP 2011) (eds. M. Van Eekelen , H. Geuvers , J. Schmaltz  and F. Wiedijk ) Lecture Notes in Computer Science, 6898 (Springer, 2011), 281296.

T. Nipkow , G. Bauer  and P. Schultz , ‘Flyspeck I: Tame graphs’, inAutomated Reasoning (IJCAR 2006) (eds. U. Furbach  and N. Shankar ) Lecture Notes in Computer Science, 4130 (Springer, 2006), 2135.

S. Obua , ‘Proving bounds for real linear programs in Isabelle/HOL’, inTheorem Proving in Higher Order Logics (eds. J. Hurd  and T. F. Melham ) Lecture Notes in Computer Science, 3603 (Springer, 2005), 227244.

S. Obua  and T. Nipkow , ‘Flyspeck II: the basic linear programs’, Ann. Math. Artif. Intell. 56(3–4) (2009).

S. Obua  and S. Skalberg , ‘Importing HOL into Isabelle/HOL’, inAutomated Reasoning, Lecture Notes in Computer Science, 4130 (Springer, 2006), 298302.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Forum of Mathematics, Pi
  • ISSN: -
  • EISSN: 2050-5086
  • URL: /core/journals/forum-of-mathematics-pi
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 5941 *
Loading metrics...

Abstract views

Total abstract views: 10400 *
Loading metrics...

* Views captured on Cambridge Core between 29th May 2017 - 19th August 2017. This data will be updated every 24 hours.