Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-ckh7h Total loading time: 0.553 Render date: 2022-07-06T04:54:33.592Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

A FORMAL PROOF OF THE KEPLER CONJECTURE

Published online by Cambridge University Press:  29 May 2017

THOMAS HALES
Affiliation:
University of Pittsburgh, USA; hales@pitt.edu, nguyenquangtruong270983@gmail.com
MARK ADAMS
Affiliation:
Proof Technologies Ltd, UK Radboud University, Nijmegen, The Netherlands; mark@proof-technologies.com
GERTRUD BAUER
Affiliation:
ESG – Elektroniksystem- und Logistik-GmbH, Germany; Gertrud.Bauer@alumni.tum.de
TAT DAT DANG
Affiliation:
CanberraWeb, 5/47-49 Vicars St, Mitchell ACT 2911, Australia; dangtatdatusb@gmail.com
JOHN HARRISON
Affiliation:
Intel Corporation, USA; johnh@ecsmtp.pdx.intel.com
LE TRUONG HOANG
Affiliation:
Institute of Mathematics, Vietnam Academy of Science and Technology, Vietnam; hltruong@math.ac.vn, ntthang.math@gmail.com, tthan@math.ac.vn, tntrung@math.ac.vn
CEZARY KALISZYK
Affiliation:
University of Innsbruck, Austria; cezary.kaliszyk@uibk.ac.at
VICTOR MAGRON
Affiliation:
CNRS VERIMAG, France; magron@lix.polytechnique.fr
SEAN MCLAUGHLIN
Affiliation:
Amazon, USA; seanmcl@gmail.com
TAT THANG NGUYEN
Affiliation:
Institute of Mathematics, Vietnam Academy of Science and Technology, Vietnam; hltruong@math.ac.vn, ntthang.math@gmail.com, tthan@math.ac.vn, tntrung@math.ac.vn
QUANG TRUONG NGUYEN
Affiliation:
University of Pittsburgh, USA; hales@pitt.edu, nguyenquangtruong270983@gmail.com
TOBIAS NIPKOW
Affiliation:
Technische Universität München, Germany; nipkow@in.tum.de
STEVEN OBUA
Affiliation:
University of Edinburgh, UK; sobua@inf.ed.ac.uk
JOSEPH PLESO
Affiliation:
Philips Electronics North America Corporation – Andover, MA, USA; joe.pleso@gmail.com
JASON RUTE
Affiliation:
The Pennsylvania State University, USA; jason.rute@gmail.com
ALEXEY SOLOVYEV
Affiliation:
University of Utah, USA; solovyev.alexey@gmail.com
THI HOAI AN TA
Affiliation:
Institute of Mathematics, Vietnam Academy of Science and Technology, Vietnam; hltruong@math.ac.vn, ntthang.math@gmail.com, tthan@math.ac.vn, tntrung@math.ac.vn
NAM TRUNG TRAN
Affiliation:
Institute of Mathematics, Vietnam Academy of Science and Technology, Vietnam; hltruong@math.ac.vn, ntthang.math@gmail.com, tthan@math.ac.vn, tntrung@math.ac.vn
THI DIEP TRIEU
Affiliation:
AXA China Region Insurance Company Limited, Hong Kong; trieudiep87@gmail.com
JOSEF URBAN
Affiliation:
Czech Institute of Informatics, Robotics and Cybernetics (CIIRC), Czech Republic; urban@cs.ru.nl
KY VU
Affiliation:
Chinese University of Hong Kong, Hong Kong; vukhacky@gmail.com
ROLAND ZUMKELLER
Affiliation:
Roland.Zumkeller@gmail.com

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article describes a formal proof of the Kepler conjecture on dense sphere packings in a combination of the HOL Light and Isabelle proof assistants. This paper constitutes the official published account of the now completed Flyspeck project.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2017

References

Adams, M., ‘Introducing HOL Zero’, inMathematical Software–ICMS 2010 (Springer, 2010), 142143.CrossRefGoogle Scholar
Adams, M., ‘Flyspecking Flyspeck’, inMathematical Software–ICMS 2014 (Springer, 2014), 1620.Google Scholar
Adams, M. and Aspinall, D., ‘Recording and refactoring HOL Light tactic proofs’, inProceedings of the IJCAR Workshop on Automated Theory Exploration (2012).Google Scholar
Bauer, G., ‘Formalizing plane graph theory – towards a formalized proof of the Kepler conjecture’. PhD Thesis, Technische Universität München, 2006. http://mediatum.ub.tum.de/doc/601794/document.pdf.Google Scholar
Bauer, G. and Nipkow, T., ‘Flyspeck I: Tame graphs’, inThe Archive of Formal Proofs (eds. Klein, G., Nipkow, T. and Paulson, L.) http://afp.sf.net/entries/Flyspeck-Tame.shtml, May 2006. Formal proof development.Google Scholar
Fejes Tóth, L., Lagerungen in der Ebene auf der Kugel und im Raum, 1st edn, (Springer, Berlin–New York, 1953).CrossRefGoogle Scholar
Flyspeck, The Flyspeck Project, 2014. https://github.com/flyspeck/flyspeck.Google Scholar
GLPK, GLPK (GNU Linear Programming Kit). http://www.gnu.org/software/glpk/.Google Scholar
Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux, S., Mahboubi, A., O’Connor, R. and Biha, S. O. et al. , ‘A machine-checked proof of the odd order theorem’, inInteractive Theorem Proving (Springer, 2013), 163179.CrossRefGoogle Scholar
Gordon, M., Milner, R. and Wadsworth, C., Edinburgh LCF: A Mechanized Logic of Computation, Lecture Notes in Computer Science, 78 (1979).CrossRefGoogle Scholar
Gordon, M. J. C. and Melham, T. F., Introduction to HOL: a Theorem Proving Environment for Higher Order Logic (Cambridge University Press, 1993).Google Scholar
Haftmann, F. and Nipkow, T., ‘Code generation via higher-order rewrite systems’, inFunctional and Logic Programming, 10th International Symposium, FLOPS 2010, Sendai, Japan, April 19–21, 2010. Proceedings (Springer, 2010), 103117. https://dx.doi.org/10.1007/978-3-642-12251-4_9.Google Scholar
Hales, T., Developments in formal proofs. Bourbaki Seminar, 2013/2014 (1086):1086-1-23, 2014.Google Scholar
Hales, T. C., ‘A proof of the Kepler conjecture’, Ann. of Math. (2) 162 (2005), 10631183.CrossRefGoogle Scholar
Hales, T. C., ‘Introduction to the Flyspeck Project’, inMathematics, Algorithms, Proofs (eds. Coquand, T., Lombardi, H. and Roy, M.-F.) Dagstuhl Seminar Proceedings, Dagstuhl, Germany, number 05021 (Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2006), http://drops.dagstuhl.de/opus/volltexte/2006/432.Google Scholar
Hales, T. C., ‘The strong dodecahedral conjecture and Fejes Tóth’s contact conjecture’, Technical Report, 2011.Google Scholar
Hales, T. C., Dense Sphere Packings: a Blueprint for Formal Proofs, London Mathematical Society Lecture Note Series, 400 (Cambridge University Press, 2012).CrossRefGoogle Scholar
Hales, T. C. and Ferguson, S. P., ‘The Kepler conjecture’, Discrete Comput. Geom. 36(1) (2006), 1269.Google Scholar
Hales, T. C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S. and Zumkeller, R., ‘A revision of the proof of the Kepler Conjecture’, Discrete Comput. Geom. 44(1) (2010), 134.CrossRefGoogle Scholar
Harrison, J., ‘Towards self-verification of HOL Light’, inAutomated Reasoning, Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17–20, 2006, Proceedings (eds. Furbach, U. and Shankar, N.) Lecture Notes in Computer Science, 4130 (Springer, 2006), 177191. ISBN 3-540-37187-7. https://dx.doi.org/10.1007/11814771_17.Google Scholar
Harrison, J., ‘Without loss of generality’, inProceedings of the 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009 (eds. Berghofer, S., Nipkow, T., Urban, C. and Wenzel, M.) Lecture Notes in Computer Science, 5674 (Springer, Munich, Germany, 2009), 4359.Google Scholar
Harrison, J., ‘HOL Light: An overview’, inTheorem Proving in Higher Order Logics (Springer, 2009), 6066.CrossRefGoogle Scholar
Harrison, J., The HOL Light theorem prover, 2014. http://www.cl.cam.ac.uk/∼jrh13/hol-light/index.html.Google Scholar
Kaliszyk, C. and Krauss, A., ‘Scalable LCF-style proof translation’, inProc. of the 4th International Conference on Interactive Theorem Proving (ITP’13) (eds. Blazy, S., Paulin-Mohring, C. and Pichardie, D.) Lecture Notes in Computer Science, 7998 (Springer, 2013), 5166.CrossRefGoogle Scholar
Kaliszyk, C. and Urban, J., ‘Learning-assisted automated reasoning with Flyspeck’, J. Automat. Reason. 53(2) (2014), 173213. https://dx.doi.org/10.1007/s10817-014-9303-3.CrossRefGoogle Scholar
Kaliszyk, C. and Urban, J., ‘Learning-assisted theorem proving with millions of lemmas’, J. Symbolic Comput. 69(0) (2014), 109128. ISSN 0747-7171. doi:10.1016/j.jsc.2014.09.032. URL http://www.sciencedirect.com/science/article/pii/S074771711400100X.CrossRefGoogle ScholarPubMed
Kepler, J., Strena seu de nive sexangula (Gottfried. Tampach, Frankfurt, 1611).Google Scholar
Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H. and Winwood, S., ‘seL4: formal verification of an OS kernel’, inProc. 22nd ACM Symposium on Operating Systems Principles 2009 (eds. Matthews, J. N. and Anderson, T. E.) (ACM, 2009), 207220.Google Scholar
Kumar, R., Arthan, R., Myreen, M. O. and Owens, S., ‘HOL with definitions: semantics, soundness, and a verified implementation’, inInteractive Theorem Proving – 5th International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14–17, 2014. Proceedings (eds. Klein, G. and Gamboa, R.) Lecture Notes in Computer Science, 8558 (Springer, 2014), 308324. ISBN 978-3-319-08969-0.https://dx.doi.org/10.1007/978-3-319-08970-6_20.Google Scholar
Lagarias, J., The Kepler Conjecture and its Proof (Springer, 2009), 326.Google Scholar
Leroy, X., ‘Formal certification of a compiler back-end, or: programming a compiler with a proof assistant’, inACM SIGPLAN Notices 41, (2006), 4254. http://compcert.inria.fr/.Google Scholar
Magron, V., ‘Formal proofs for global optimization – templates and sums of squares’. PhD Thesis, École Polytechnique, 2013.Google Scholar
Marchal, C., ‘Study of the Kepler’s conjecture: the problem of the closest packing’, Math. Z. 267(3–4) (2011), 737765. ISSN 0025-5874. https://dx.doi.org/10.1007/s00209-009-0644-2.CrossRefGoogle Scholar
McLaughlin, S., ‘An interpretation of Isabelle/HOL in HOL Light’, inIJCAR (eds. Furbach, U. and Shankar, N.) Lecture Notes in Computer Science, 4130 (Springer, 2006), 192204.Google Scholar
Moore, R. E., Kearfott, R. B. and Cloud, M. J., Introduction to Interval Analysis (SIAM, 2009).CrossRefGoogle Scholar
Nipkow, T., ‘Verified efficient enumeration of plane graphs modulo isomorphism’, inInteractive Theorem Proving (ITP 2011) (eds. Van Eekelen, M., Geuvers, H., Schmaltz, J. and Wiedijk, F.) Lecture Notes in Computer Science, 6898 (Springer, 2011), 281296.CrossRefGoogle Scholar
Nipkow, T., Paulson, L. and Wenzel, M., Isabelle/HOL – A Proof Assistant for Higher-Order Logic, Lecture Notes in Computer Science, 2283 (Springer, 2002), http://www.in.tum.de/∼nipkow/LNCS2283/.Google Scholar
Nipkow, T., Bauer, G. and Schultz, P., ‘Flyspeck I: Tame graphs’, inAutomated Reasoning (IJCAR 2006) (eds. Furbach, U. and Shankar, N.) Lecture Notes in Computer Science, 4130 (Springer, 2006), 2135.CrossRefGoogle Scholar
Obua, S., ‘Proving bounds for real linear programs in Isabelle/HOL’, inTheorem Proving in Higher Order Logics (eds. Hurd, J. and Melham, T. F.) Lecture Notes in Computer Science, 3603 (Springer, 2005), 227244.CrossRefGoogle Scholar
Obua, S., ‘Flyspeck II: the basic linear programs’. PhD Thesis, Technische Universität München, 2008.Google Scholar
Obua, S. and Nipkow, T., ‘Flyspeck II: the basic linear programs’, Ann. Math. Artif. Intell. 56(3–4) (2009).CrossRefGoogle Scholar
Obua, S. and Skalberg, S., ‘Importing HOL into Isabelle/HOL’, inAutomated Reasoning, Lecture Notes in Computer Science, 4130 (Springer, 2006), 298302.CrossRefGoogle Scholar
Solovyev, A., ‘Formal methods and computations’. PhD Thesis, University of Pittsburgh, 2012. http://d-scholarship.pitt.edu/16721/.Google Scholar
Solovyev, A. and Hales, T. C., Efficient Formal Verification of Bounds of Linear Programs, Lecture Notes in Computer Science, 6824 (Springer, 2011), 123132.Google Scholar
Solovyev, A. and Hales, T. C., ‘Formal verification of nonlinear inequalities with Taylor interval approximations’, inNFM, Lecture Notes in Computer Science, 7871 (Springer, 2013), 383397.Google Scholar
Tange, O., ‘GNU parallel – the command-line power tool’, USENIX Mag. 36(1) (2011), 4247. URL http://www.gnu.org/s/parallel.Google Scholar
Tankink, C., Kaliszyk, C., Urban, J. and Geuvers, H., ‘Formal mathematics on display: A wiki for Flyspeck’, inMKM/Calculemus/DML (eds. Carette, J., Aspinall, D., Lange, C., Sojka, P. and Windsteiger, W.) Lecture Notes in Computer Science, 7961 (Springer, 2013), 152167. ISBN 978-3-642-39319-8.Google Scholar
Zumkeller, R., ‘Global optimization in type theory’. PhD Thesis, École Polytechnique Paris, 2008.Google Scholar
You have Access Open access
80
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A FORMAL PROOF OF THE KEPLER CONJECTURE
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A FORMAL PROOF OF THE KEPLER CONJECTURE
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A FORMAL PROOF OF THE KEPLER CONJECTURE
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *