No CrossRef data available.
Published online by Cambridge University Press: 13 January 2016
We prove uniqueness for the Calderón problem with Lipschitz conductivities in higher dimensions. Combined with the recent work of Haberman, who treated the three- and four-dimensional cases, this confirms a conjecture of Uhlmann. Our proof builds on the work of Sylvester and Uhlmann, Brown, and Haberman and Tataru who proved uniqueness for $C^{1}$ -conductivities and Lipschitz conductivities sufficiently close to the identity.