Albiac, F. and Kalton, N. J., Topics in Banach Space Theory, Graduate Texts in Mathematics, 233 (Springer, New York, 2006).
Alon, N. and Naor, A., ‘Approximating the cut-norm via Grothendieck’s inequality’, SIAM J. Comput. 35(4) (2006), 787–803 (electronic).
Andrews, G. E., Askey, R. and Roy, R., Special Functions, Encyclopedia of Mathematics and its Applications, 71 (Cambridge University Press, Cambridge, 1999).
Azor, R., Gillis, J. and Victor, J. D., ‘Combinatorial applications of Hermite polynomials’, SIAM J. Math. Anal. 13(5) (1982), 879–890.
Blei, R., Analysis in Integer and Fractional Dimensions, Cambridge Studies in Advanced Mathematics, 71 (Cambridge University Press, Cambridge, 2001).
Blei, R. C., ‘An elementary proof of the Grothendieck inequality’, Proc. Amer. Math. Soc. 100(1) (1987), 58–60.
Cleve, R., Høyer, P., Toner, B. and Watrous, J., ‘Consequences and limits of nonlocal strategies’, 19th Annual IEEE Conference on Computational Complexity (2004), 236–249.
Davie, A. M., ‘Matrix norms related to Grothendieck’s inequality’, in Banach Spaces (Columbia, Mo., 1984), Lecture Notes in Mathematics, 1166 (Springer, Berlin, 1985), 22–26.
Diestel, J., Fourie, J. H. and Swart, J., The Metric Theory of Tensor Products (American Mathematical Society, Providence, RI, 2008), Grothendieck’s résumé revisited.
Diestel, J., Jarchow, H. and Tonge, A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43 (Cambridge University Press, Cambridge, 1995).
Fishburn, P. C. and Reeds, J. A., ‘Bell inequalities, Grothendieck’s constant, and root two’, SIAM J. Discrete Math. 7(1) (1994), 48–56.
Frieze, A. and Kannan, R., ‘Quick approximation to matrices and applications’, Combinatorica 19(2) (1999), 175–220.
Garling, D. J. H., Inequalities: A Journey into Linear Analysis (Cambridge University Press, Cambridge, 2007).
Grothendieck, A., ‘Résumé de la théorie métrique des produits tensoriels topologiques’, Bol. Soc. Mat. São Paulo 8 (1953), 1–79.
Grötschel, M., Lovász, L. and Schrijver, A., ‘The ellipsoid method and its consequences in combinatorial optimization’, Combinatorica 1(2) (1981), 169–197.
Haagerup, U., ‘A new upper bound for the complex Grothendieck constant’, Israel J. Math. 60(2) (1987), 199–224.
Jameson, G. J. O., Summing and Nuclear Norms in Banach Space Theory, London Mathematical Society Student Texts, 8 (Cambridge University Press, Cambridge, 1987).
Johnson, W. B. and Lindenstrauss, J., ‘Basic concepts in the geometry of Banach spaces’, in Handbook of the Geometry of Banach Spaces, Vol. I (North-Holland, Amsterdam, 2001), 1–84.
Khot, S., ‘On the power of unique 2-prover 1-round games’, in Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing (ACM, New York, 2002), 767–775 (electronic).
Khot, S., Kindler, G., Mossel, E. and O’Donnell, R., ‘Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?’, SIAM J. Comput. 37(1) (2007), 319–357 (electronic).
Khot, S. and Naor, A., ‘Grothendieck-type inequalities in combinatorial optimization’, Comm. Pure Appl. Math. 65(7) (2012), 992–1035.
König, H., ‘On an extremal problem originating in questions of unconditional convergence’, in Recent Progress in Multivariate Approximation (Witten-Bommerholz, 2000), Internat. Ser. Numer. Math., 137 (Birkhäuser, Basel, 2001), 185–192.
Krivine, J.-L., ‘Sur la constante de Grothendieck’, C. R. Acad. Sci. Paris Sér. A–B 284(8) (1977), A445–A446.
Krivine, J.-L., ‘Constantes de Grothendieck et fonctions de type positif sur les sphères’, Adv. Math. 31(1) (1979), 16–30.
Lieb, E. H., ‘Gaussian kernels have only Gaussian maximizers’, Invent. Math. 102(1) (1990), 179–208.
Lindenstrauss, J. and Pełczyński, A., ‘Absolutely summing operators in -spaces and their applications’, Studia Math. 29 (1968), 275–326.
Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces. I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 92 (Springer, Berlin, 1977).
Maurey, B., ‘Une nouvelle démonstration d’un théorème de Grothendieck’, in Séminaire Maurey-Schwartz Année 1972–1973: Espaces et applications radonifiantes, Exp. No. 22 (Centre de Math., École Polytech, Paris, 1973), 7.
Maurey, B. and Pisier, G., ‘Un théorème d’extrapolation et ses conséquences’, C. R. Acad. Sci. Paris Sér. A–B 277 (1973), A39–A42.
Pisier, G., ‘Grothendieck’s theorem for noncommutative -algebras, with an appendix on Grothendieck’s constants’, J. Funct. Anal. 29(3) (1978), 397–415.
Pisier, G., Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conference Series in Mathematics, 60 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986).
Pisier, G., ‘Grothendieck’s theorem, past and present’, Bull. Amer. Math. Soc. (N.S.) 49(2) (2012), 237–323.
Raghavendra, P. and Steurer, D., ‘Towards computing the Grothendieck constant’, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2009, 525–534.
Rietz, R. E., ‘A proof of the Grothendieck inequality’, Israel J. Math. 19 (1974), 271–276.
Schwartz, L., Geometry and Probability in Banach Spaces, Lecture Notes in Mathematics, 852 (Springer, Berlin, 1981), based on notes taken by Paul R. Chernoff.
Tsirelson, B. S., ‘Quantum analogues of Bell’s inequalities. The case of two spatially divided domains’, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 142 (1985), 174–194, 200. Problems of the theory of probability distributions, IX.