We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove existence of solutions of the vacuum Einstein equations with initial data induced by a smooth metric on a light-cone.
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .
Andersson, L. and Chruściel, P. T., ‘On asymptotic behavior of solutions of the constraint equations in general relativity with hyperboloidal boundary conditions’, Dissert. Math.355 (1996), 1–100.Google Scholar
[2]
Cagnac, F., ‘Problème de Cauchy sur un conoïde caractéristique pour des équations quasi-linéaires’, Ann. Mat. Pura Appl. 4129 (1981), 13–41.CrossRefGoogle Scholar
[3]
Choquet-Bruhat, Y., General Relativity and the Einstein Equations, Oxford Mathematical Monographs (Oxford University Press, Oxford, 2009).Google Scholar
[4]
Choquet-Bruhat, Y., Chruściel, P. T. and Martín-García, J. M., ‘An existence theorem for the Cauchy problem on a characteristic cone for the Einstein equations’, Cont. Math.554 (2011), 73–81. arXiv:1006.5558 [gr-qc].CrossRefGoogle Scholar
[5]
Choquet-Bruhat, Y., Chruściel, P. T. and Martín-García, J. M., ‘The Cauchy problem on a characteristic cone for the Einstein equations in arbitrary dimensions’, Ann. Henri Poincaré12 (2011), 419–482. arXiv:1006.4467 [gr-qc].CrossRefGoogle Scholar
[6]
Choquet-Bruhat, Y., Chruściel, P. T. and Martín-García, J. M., ‘An existence theorem for the Cauchy problem on a characteristic cone for the Einstein equations with near-round analytic data’, Uchenye zapiski Kazanskogo universiteta3 (2012), arXiv:1012.0777 [gr-qc].Google Scholar
[7]
Chruściel, P. T. and Jezierski, J., ‘On free general relativistic initial data on the light cone’, J. Geom. Phys.62 (2012), 578–593. arXiv:1010.2098 [gr-qc].CrossRefGoogle Scholar
[8]
Chruściel, P. T. and Lengard, O., ‘Solutions of wave equations in the radiating regime’, Bull. Soc. Math. France133 (2003), 1–72. arXiv:math.AP/0202015.Google Scholar
[9]
Chruściel, P. T. and Paetz, T.-T., ‘The many ways of the characteristic Cauchy problem’, Classical Quantum Gravity29 (2012), 145006, 27. arXiv:1203.4534 [gr-qc].CrossRefGoogle Scholar
[10]
Chruściel, P. T. and Paetz, T.-T., ‘Solutions of the vacuum Einstein equations with initial data on past null infinity’, Classical Quantum Gravity30 (2013), 235037. arXiv:1307.0321 [gr-qc].CrossRefGoogle Scholar
[11]
Damour, T. and Schmidt, B., ‘Reliability of perturbation theory in general relativity’, J. Math. Phys.31 (1990), 2441–2453.CrossRefGoogle Scholar
[12]
Dossa, M., ‘Espaces de Sobolev non isotropes, à poids et problèmes de Cauchy quasi-linéaires sur un conoïde caractéristique’, Ann. Inst. Henri Poincaré Phys. Théor.66 (1997), 37–107.Google Scholar
[13]
Dossa, M., ‘Problèmes de Cauchy sur un conoïde caractéristique pour les équations d’Einstein (conformes) du vide et pour les équations de Yang-Mills-Higgs’, Ann. Henri Poincaré4 (2003), 385–411.Google Scholar
Friedrich, H., ‘The Taylor expansion at past time-like infinity’, Comm. Math. Phys.324 (2013), 263–300. arXiv:1306.5626 [gr-qc].CrossRefGoogle Scholar
[16]
Galloway, G. J., ‘Maximum principles for null hypersurfaces and null splitting theorems’, Ann. H. Poincaré1 (2000), 543–567.CrossRefGoogle Scholar
[17]
Häfner, D. and Nicolas, J.-P., ‘The characteristic Cauchy problem for Dirac fields on curved backgrounds’, J. Hyperbolic Differ. Equ.8 (2011), 437–483. arXiv:0903.0515 [math.AP].CrossRefGoogle Scholar
[18]
Luk, J., ‘On the local existence for the characteristic initial value problem in general relativity’, Int. Math. Res. Not. IMRN (2012), 4625–4678.CrossRefGoogle Scholar
[19]
Rendall, A. D., ‘Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations’, Proc. R. Soc. Lond. A427 (1990), 221–239.Google Scholar
[20]
Thomas, T. Y., The Differential Invariants of Generalized Spaces, (Cambridge University Press, 1934).Google Scholar